Clinical Pedicle Screw Insertion Trials and System Improvement of C-arm Image Navigation System
详细信息    查看全文
  • 作者:Chih-Ju Chang ; Ching-Hsiao Yu ; Geng-Li Lin…
  • 关键词:C ; arm ; Surgical navigation ; Spinal surgery ; X ; ray detection ; Image recognition
  • 刊名:Journal of Medical and Biological Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:36
  • 期:1
  • 页码:44-52
  • 全文大小:2,414 KB
  • 参考文献:1.Mobbs, R. J., Sivabalan, P., & Li, J. (2012). Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies. Journal of Clinical Neuroscience, 19, 829–835.CrossRef
    2.Amiot, L. P., Lang, K., Putzier, M., Zippel, H., & Labelle, H. (2000). Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine, 25, 606–614.CrossRef
    3.Gebhard, F., Weidner, A., Liener, U. C., Stockle, U., & Arand, M. (2004). Navigation at the spine. Injury, 35, 35–45.CrossRef
    4.Kamimura, M., Ebara, S., Itoh, H., Tateiwa, Y., Kinoshita, T., & Takaoka, K. (1999). Accurate pedicle screw insertion under the control of a computer-assisted image guiding system: Laboratory test and clinical study. Journal of Orthopaedic Science, 4, 197–206.CrossRef
    5.Liu, Y. J., Tian, W., Liu, B., Li, Q., Hu, L., Li, Z. Y., et al. (2010). Comparison of the clinical accuracy of cervical (c2-c7) pedicle screw insertion assisted by fluoroscopy, computed tomography-based navigation, and intraoperative three-dimensional c-arm navigation. Chinese Medical Journal, 123, 2995–2998.
    6.Waschke, A., Walter, J., Duenisch, P., Reichart, R., Kalff, R., & Ewald, C. (2013). Ct-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: Single center experience of 4,500 screws. European Spine Journal, 22, 654–660.CrossRef
    7.Fu, T. S., Chen, L. H., Wong, C. B., Lai, P. L., Tsai, T. T., Niu, C. C., & Chen, W. J. (2004). Computer-assisted fluoroscopic navigation of pedicle screw insertion: An in vivo feasibility study. Acta Orthopaedica, 75, 730–735.CrossRef
    8.Yang, C. D., Chen, Y. W., Tseng, C. S., Ho, H. J., Wu, C. C., & Wang, K. W. (2012). Non-invasive fluoroscopy-based image-guided surgery reduces radiation exposure for vertebral compression fractures: A preliminary survey. Formosan Journal of Surgery, 45, 12–19.CrossRef
    9.Hufner, T., Kendoff, D., Citak, M., Geerling, J., & Krettek, C. (2006). Precision in orthopaedic computer navigation. Orthopade, 35, 1043–1055.CrossRef
    10.Nowitzke, A., Wood, M., & Cooney, K. (2008). Improving accuracy and reducing errors in spinal surgery–a new technique for thoracolumbar-level localization, using computer-assisted image guidance. Spine Journal, 8, 597–604.CrossRef
    11.Sclafani, J. A., Regev, G. J., Webb, J., Garfin, S. R., & Kim, C. W. (2011). Use of a quantitative pedicle screw accuracy system to assess new technology: Initial studies on o-arm navigation and its effect on the learning curve of percutaneous pedicle screw insertion. SAS Journal, 5, 57–62.CrossRef
    12.Rampersaud, Y. R., Foley, K. T., Shen, A. C., Williams, S., & Solomito, M. (2000). Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine, 25, 2637–2645.CrossRef
    13.Yang, B. P., Wahl, M. M., & Idler, C. S. (2012). Percutaneous lumbar pedicle screw placement aided by computer-assisted fluoroscopy-based navigation: Perioperative results of a prospective, comparative, multicenter study. Spine, 37, 2055–2060.CrossRef
    14.Gelalis, I. D., Paschos, N. K., Pakos, E. E., Politis, A. N., Arnaoutoglou, C. M., Karageorgos, A. C., et al. (2012). Accuracy of pedicle screw placement: A systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. European Spine Journal, 21, 247–255.CrossRef
    15.Eyke, J. C., Roesch, W., & Whitecloud, T. S. (2002). Computer-assisted virtual fluoroscopy. The University of Pennsylvania Orthopaedic Journal, 15, 53–59.
    16.Wu, C. C., Wang, S. M., Yen, C. H., & Tseng, C. S. (2003). Development of c-arm image-assisted navigation system for orthopedic operation. Annual Symposium on Medical Engineering, 20(6), 857–881.
    17.He, Y. Y. (2005). C-arm based surgical navigation system for intertrochanteric fracture. Thesis in graduate institute of mechanical engineering, National Central University.
    18.Fan, C. W. (2007). C-arm-based navigation system for hip resurfacing arthroplasty. Thesis in graduate institute of mechanical engineering, National Central University.
    19.Wang, S. M. (2002). C-arm image-assisted planning and navigation system for orthopedic operation. Thesis in graduate institute of mechanical engineering, National Central University.
    20.Yaniv, Z., Livyatan, H., & Joskowicz, L. (2002). Robust automatic c-arm calibration for fluoroscopy-based navigation: A practical approach. In T. Dohi & R. Kikinis (Eds.), Medical image computing and computer-assisted intervention-MICCAI 2002 lecture notes in computer science (pp. 60–68). Berlin: Springer.
    21.Zhang, X., & Zheng, G. (2009). Robust automatic detection and removal of fiducial projections in fluoroscopy images: An integrated solution. Medical Engineering & Physics, 31, 571–580.CrossRef
    22.Penney, G. P., Weese, J., Little, J. A., Desmedt, P., Hill, D. L., & Hawkes, D. J. (1998). A comparison of similarity measures for use in 2-d-3-d medical image registration. IEEE Transactions on Medical Imaging, 17, 586–595.CrossRef
    23.Cerciello, T., Romano, M., Bifulco, P., Cesarelli, M., & Allen, R. (2011). Advanced template matching method for estimation of intervertebral kinematics of lumbar spine. Medical Engineering & Physics, 33, 1293–1302.CrossRef
    24.Kim, M., Wu, J., Peters, J., Chung, H., & Samant, S. S. (2009). Evaluation of similarity measures for use in the intensity-based rigid 2d-3d registration for patient positioning in radiotherapy. Medical Physics, 36, 5391–5403.CrossRef
    25.Bifulco, P., Cerciello, T., Cesarelli, M., & Fratini, A. (2012). A comparison of denoising methods for X-ray fluoroscopic images. Biomedical Signal Processing and Control, 7, 550–559.CrossRef
    26.Cesarelli, M., Bifulco, P., Cerciello, T., Romano, M., & Paura, L. (2013). X-ray fluoroscopy noise modeling for filter design. International Journal of Computer Assisted Radiology and Surgery, 8, 269–278.CrossRef
    27.Johnson, H. J., & Christensen, G. E. (2002). Consistent landmark and intensity-based image registration. IEEE Transactions on Medical Imaging, 21, 450–461.CrossRef
  • 作者单位:Chih-Ju Chang (1) (2) (3)
    Ching-Hsiao Yu (1) (4)
    Geng-Li Lin (1)
    Alex Tse (1)
    Hong-Yu Chu (1)
    Ching-Shiow Tseng (1)

    1. Department of Mechanical Engineering, National Central University, Jhongli City, Taoyuan County, 32001, Taiwan, ROC
    2. Department of Neurosurgery, Cathay General Hospital, Taipei, 10630, Taiwan
    3. Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
    4. Department of Orthopedics, Taoyuan General Hospital, Taoyuan, Taiwan
  • 刊物类别:Biomedical Engineering; Cell Biology; Imaging / Radiology;
  • 刊物主题:Biomedical Engineering; Cell Biology; Imaging / Radiology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2199-4757
文摘
C-arm-image-assisted navigation systems for orthopedic surgery have been applied clinically for several years. Pedicle screw implantation is one of the important applications. A precise definition of a C-arm X-ray projection model is the key requirement for a C-arm-assisted navigation system. This study proposes using a high-pass filter to extract the contour of large markers of the image calibrator and an adaptive threshold method to segment images of small markers, thus improving the overall recognition rate of markers and enhancing the robustness of image calibration. A method for time synchronization of X-ray imaging and the detection of a patient’s lumbar position data for respiration compensation is also proposed. Positioning accuracy evaluation of the developed C-arm-assisted navigation system was carried out clinically. The results show that the mean positioning error is 2.409 mm and that the mean direction error is 1.449°.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700