Determination of volatile products of human colon cell line metabolism by GC/MS analysis
详细信息    查看全文
  • 作者:Dunja Zimmermann (1)
    Michelle Hartmann (1)
    Mary Pat Moyer (2)
    Jürgen Nolte (1)
    J?rg Ingo Baumbach (1)
  • 关键词:metabolomics ; human colon cell lines ; metabolic pathways ; volatile metabolites ; SPME ; GC/MS
  • 刊名:Metabolomics
  • 出版年:2007
  • 出版时间:March 2007
  • 年:2007
  • 卷:3
  • 期:1
  • 页码:13-17
  • 全文大小:228KB
  • 参考文献:1. Bosron W.F., Li T.K., Dafeldecker W.P., Vallee B.L. (1979). Human liver pi-alcohol dehydrogenase: kinetic and molecular properties. Biochemistry 6:1101-105 CrossRef
    2. Chen G., Banoglu E., Duffel M.W. (1996). Influence of substrate structure on the catalytic efficiency of hydroxysteroid sulfotransferase STa in the sulfation of alcohols. Chem. Res. Toxicol. 9:67-4 CrossRef
    3. Chou C.F., Lai C.L., Chang Y., Cuester G., Yin S.J. (2002). Kinetic mechanism of human class IV alcohol dehydrogenase functioning as retinol dehydrogenase. J. Biol. Chem. 277:25209-5216 CrossRef
    4. Forrest G.L., Gonzalez B. (2000). Carbonyl reductase. Chem. Biol. Interact. 129(1-):21-0 CrossRef
    5. Klyosov A.A. (1996). Kinetics and specifity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes. Biochemistry 35:4457-467 CrossRef
    6. Larroy C., Fernandesz M.R., Gonzalez E., Pares X., Biosca J.A. (2002). Characterization of the Saccharomyces cervisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem. J. 361:163-72 CrossRef
    7. Lee T. (1979). Characterization of fatty alcohol: NAD+ oxidoreductase from rat liver. J. Biol. Chem. 254:2892-896
    8. Leibovitz A., Stinson J.C., McCombs W.B., McCoy C.E., Mazur K.C., Mabry N.D. (1976). Classification of human colorectal adenocarcinoma cell line. Cancer Res. 36:4562-569
    9. Moyer M.P., Manzano L.A., Merriman R.L., Stauffer J.S., Tanzer L.R. (1996). NCM460, a normal human colon mucosal epithelial cell line. In Vitro Cell. Dev. Biol. Anim. 32:315-17
    10. Nicholson J.K., Wilson I.D. (2003). Understanding global systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 8:668-76 CrossRef
    11. Oritani H., Deyashiki Y., Nakayama T., Hara A., Sawada H., Matsuura K., Bunai Y., Ohya I. (1992). Purification and characterization of pig lung carbonyl reductase. Arch. Biochem. Biophys. 292:539-47 CrossRef
    12. Roessner U., Wagner C., Kopka J., Trethewey R.N., Willmitzer L.(2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23:31-42 CrossRef
    13. Sakai K., Hamada N., Watanabe Y. (1985). Purification and properties of secondary alcohol oxidase with an acidic isoelectric point. Agric. Biol. Chem. 49:817-25
    14. Schmied B.M., Ulrich A., Matsuzaki H., Batra S.K., Pour P.M. (2000). Maintenance of human islets in long-term culture. Differentiation 66:173-80 CrossRef
    15. Schomburg I., Hofmann O., B?nsch C., Chang A., Schomburg D. (2000). Enzyme data and metabolic information: BRENDA, a resource for research biology, biochemistry and medicine. Gene Funct. Dis. 3, 4:109-18 CrossRef
    16. Schulz T.J., Thierbach R., Voigt A., Drewes G., Mietzner B., Steinberg P., Pfeiffer A.F.H., Ristow M. (2006). Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J. Biol. Chem. 281(2):977-81 CrossRef
    17. Shockcor J.P., Unger S.E., Wilson I.D., Foxall P.J.D., Nicholson J.K., Lindon J.C. (1996). Combined HPLC, NMR spectroscopy, and ion-trap mass spectrometry with application to the detection and characterization of xenobiotic and endogenous metabolites in human urine. Anal. Chem. 68:4431-435 CrossRef
    18. Villas-B?as S.G., Mas S., ?kesson S.M., Smedsgaard J., Nielsen J. (2005). Mass spectrometry in metabolome analysis. Mass Spectrom. Rev. 24:613-46 CrossRef
    19. Wermuth B., Munch J.D., von Wartburg J.P. (1977). Purification and properties of NADPH-dependent aldehyde reductase from human liver. J. Biol. Chem. 252(11):3821-828
  • 作者单位:Dunja Zimmermann (1)
    Michelle Hartmann (1)
    Mary Pat Moyer (2)
    Jürgen Nolte (1)
    J?rg Ingo Baumbach (1)

    1. Department of Metabolomics, ISAS -Institute for Analytical Sciences, Bunsen-Kirchhoff-Str. 11, 44139, Dortmund, Germany
    2. INCELL Corporation, LLC, 12000 Network Blvd, Suite B-200, San Antonio, TX, 78249, USA
  • ISSN:1573-3890
文摘
Colon cancer is one of the most reasons for cancer death worldwide. Thus, it is important to find new prognostic and diagnostic marker, as well as to throw light on the special metabolic pathways of colon cancer cells. This paper highlights for the first time some qualitative differences in the profiles of the volatile metabolites of colon cancer cell lines SW 480 (grade IV, Duke B) and SW 1116 (grade II, Duke A) among themselves and in comparison to the normal colon cell line NCM460, which are mostly represented by ketones and alcohols. These results, which were obtained by applying solid phase micro extraction (SPME) and combined gas chromatography/mass spectrometry (GC/MS), are consistent with Warburg’s hypothesis because the found reaction products may indicate that the cancer cells show the Crabtree’s effect. Furthermore, compounds like undecan-2-ol and pentadecan-2-one were associated for the first time with the human metabolism. In summary, these findings indicate that the metabolism of colon cancer cells differs extremely from the metabolism of healthy cells and it changes during the progress of the disease. Compounds that are present in the breath, the blood and the tissue of patients represent the differences and they can serve as new biomarker for colon cancer in future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700