Actin Aggregations Mark the Sites of Neurite Initiation
详细信息    查看全文
  • 作者:Shu-Xin Zhang ; Li-Hui Duan ; Hong Qian ; Xiang Yu
  • 关键词:Neurite initiation ; Neuritogenesis ; Actin aggregations ; Actin ; Microtubules
  • 刊名:Neuroscience Bulletin
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:32
  • 期:1
  • 页码:1-15
  • 全文大小:2,802 KB
  • 参考文献:1.Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci 1988, 8: 1454–1468.PubMed
    2.Craig AM, Banker G. Neuronal polarity. Annu Rev Neurosci 1994, 17: 267–310.CrossRef PubMed
    3.Barnes AP, Solecki D, Polleux F. New insights into the molecular mechanisms specifying neuronal polarity in vivo. Curr Opin Neurobiol 2008, 18: 44–52.PubMedCentral CrossRef PubMed
    4.Funahashi Y, Namba T, Nakamuta S, Kaibuchi K. Neuronal polarization in vivo: Growing in a complex environment. Curr Opin Neurobiol 2014, 27: 215–223.CrossRef PubMed
    5.Randlett O, Norden C, Harris WA. The vertebrate retina: a model for neuronal polarization in vivo. Dev Neurobiol 2011, 71: 567–583.CrossRef PubMed
    6.Arimura N, Kaibuchi K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 2007, 8: 194–205.CrossRef PubMed
    7.Barnes AP, Polleux F. Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 2009, 32: 347–381.PubMedCentral CrossRef PubMed
    8.Cheng PL, Poo MM. Early events in axon/dendrite polarization. Annu Rev Neurosci 2012, 35: 181–201.CrossRef PubMed
    9.Stiess M, Bradke F. Neuronal polarization: the cytoskeleton leads the way. Dev Neurobiol 2011, 71: 430–444.CrossRef PubMed
    10.Arikkath J. Molecular mechanisms of dendrite morphogenesis. Front Cell Neurosci 2012, 6: 61.PubMedCentral CrossRef PubMed
    11.Cline H, Haas K. The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. J Physiol 2008, 586: 1509–1517.PubMedCentral CrossRef PubMed
    12.Koleske AJ. Molecular mechanisms of dendrite stability. Nat Rev Neurosci 2013, 14: 536–550.PubMedCentral CrossRef PubMed
    13.Puram SV, Bonni A. Cell-intrinsic drivers of dendrite morphogenesis. Development 2013, 140: 4657–4671.PubMedCentral CrossRef PubMed
    14.Urbanska M, Blazejczyk M, Jaworski J. Molecular basis of dendritic arborization. Acta Neurobiol Exp (Wars) 2008, 68: 264–288.
    15.Jan YN, Jan LY. Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 2010, 11: 316–328.PubMedCentral CrossRef PubMed
    16.Wong RO, Ghosh A. Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 2002, 3: 803–812.CrossRef PubMed
    17.Dalva MB, McClelland AC, Kayser MS. Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 2007, 8: 206–220.CrossRef PubMed
    18.McAllister AK. Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 2007, 30: 425–450.PubMedCentral CrossRef PubMed
    19.Shen K, Scheiffele P. Genetics and cell biology of building specific synaptic connectivity. Annu Rev Neurosci 2010, 33: 473–507.PubMedCentral CrossRef PubMed
    20.Waites CL, Craig AM, Garner CC. Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 2005, 28: 251–274.CrossRef PubMed
    21.Yuste R, Bonhoeffer T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 2004, 5: 24–34.CrossRef PubMed
    22.Bhatt DH, Zhang S, Gan WB. Dendritic spine dynamics. Annu Rev Physiol 2009, 71: 261–282.CrossRef PubMed
    23.Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 2009, 10: 647–658.CrossRef PubMed
    24.Tada T, Sheng M. Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 2006, 16: 95–101.CrossRef PubMed
    25.da Silva JS, Dotti CG. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 2002, 3: 694–704.CrossRef PubMed
    26.Flynn KC. The cytoskeleton and neurite initiation. Bioarchitecture 2013, 3: 86–109.PubMed
    27.Sainath R, Gallo G. Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res 2014.
    28.Zolessi FR, Poggi L, Wilkinson CJ, Chien CB, Harris WA. Polarization and orientation of retinal ganglion cells in vivo. Neural Dev 2006, 1: 2.PubMedCentral CrossRef PubMed
    29.Namba T, Kibe Y, Funahashi Y, Nakamuta S, Takano T, Ueno T, et al. Pioneering axons regulate neuronal polarization in the developing cerebral cortex. Neuron 2014, 81: 814–829.CrossRef PubMed
    30.Hatanaka Y, Yamauchi K. Excitatory cortical neurons with multipolar shape establish neuronal polarity by forming a tangentially oriented axon in the intermediate zone. Cereb Cortex 2013, 23: 105–113.CrossRef PubMed
    31.Gupton SL, Gertler FB. Filopodia: the fingers that do the walking. Sci STKE 2007, 2007: re5.
    32.Gallo G. Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. Int Rev Cell Mol Biol 2013, 301: 95–156.CrossRef PubMed
    33.Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 2008, 9: 446–454.CrossRef PubMed
    34.Edson K, Weisshaar B, Matus A. Actin depolymerisation induces process formation on MAP2-transfected non-neuronal cells. Development 1993, 117: 689–700.PubMed
    35.Caceres A, Mautino J, Kosik KS. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 1992, 9: 607–618.CrossRef PubMed
    36.Smith CL. The initiation of neurite outgrowth by sympathetic neurons grown in vitro does not depend on assembly of microtubules. J Cell Biol 1994, 127: 1407–1418.CrossRef PubMed
    37.Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 2001, 155: 65–76.PubMedCentral CrossRef PubMed
    38.Dehmelt L, Smart FM, Ozer RS, Halpain S. The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 2003, 23: 9479–9490.PubMed
    39.Dehmelt L, Halpain S. Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol 2004, 58: 18–33.CrossRef PubMed
    40.Marsh L, Letourneau PC. Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J Cell Biol 1984, 99: 2041–2047.CrossRef PubMed
    41.Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, Rubinson DA, et al. Filopodia are required for cortical neurite initiation. Nat Cell Biol 2007, 9: 1347–1359.CrossRef PubMed
    42.Kwiatkowski AV, Rubinson DA, Dent EW, Edward van Veen J, Leslie JD, Zhang J, et al. Ena/VASP Is Required for neuritogenesis in the developing cortex. Neuron 2007, 56: 441–455.CrossRef PubMed
    43.Barzik M, Kotova TI, Higgs HN, Hazelwood L, Hanein D, Gertler FB, et al. Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J Biol Chem 2005, 280: 28653–28662.PubMedCentral CrossRef PubMed
    44.Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 2002, 109: 509–521.CrossRef PubMed
    45.Andrianantoandro E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 2006, 24: 13–23.CrossRef PubMed
    46.Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol 2010, 20: 187–195.PubMedCentral CrossRef PubMed
    47.Flynn KC, Hellal F, Neukirchen D, Jacob S, Tahirovic S, Dupraz S, et al. ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 2012, 76: 1091–1107.CrossRef PubMed
    48.Gartner A, Fornasiero EF, Valtorta F, Dotti CG. Distinct temporal hierarchies in membrane and cytoskeleton dynamics precede the morphological polarization of developing neurons. J Cell Sci 2014, 127: 4409–4419.CrossRef PubMed
    49.Tan ZJ, Peng Y, Song HL, Zheng JJ, Yu X. N-cadherin-dependent neuron-neuron interaction is required for the maintenance of activity-induced dendrite growth. Proc Natl Acad Sci U S A 2010, 107: 9873–9878.PubMedCentral CrossRef PubMed
    50.Yu X, Malenka RC. Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 2003, 6: 1169–1177.CrossRef PubMed
    51.Gallardo G, Schluter OM, Sudhof TC. A molecular pathway of neurodegeneration linking alpha-synuclein to ApoE and Abeta peptides. Nat Neurosci 2008, 11: 301–308.CrossRef PubMed
    52.Edlund M, Lotano MA, Otey CA. Dynamics of alpha-actinin in focal adhesions and stress fibers visualized with alpha-actinin-green fluorescent protein. Cell Motil Cytoskeleton 2001, 48: 190–200.CrossRef PubMed
    53.Rompani SB, Cepko CL. Retinal progenitor cells can produce restricted subsets of horizontal cells. Proc Natl Acad Sci U S A 2008, 105: 192–197.PubMedCentral CrossRef PubMed
    54.Zheng JJ, Li SJ, Zhang XD, Miao WY, Zhang D, Yao H, et al. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices. Nat Neurosci 2014, 17: 391–399.CrossRef PubMed
    55.He S, Ma J, Liu N, Yu X. Early enriched environment promotes neonatal GABAergic neurotransmission and accelerates synapse maturation. J Neurosci 2010, 30: 7910–7916.CrossRef PubMed
    56.Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 2004, 27: 392–399.CrossRef PubMed
    57.Hayashi K, Kubo K, Kitazawa A, Nakajima K. Cellular dynamics of neuronal migration in the hippocampus. Front Neurosci 2015, 9: 135.PubMedCentral CrossRef PubMed
    58.Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 2010, 68: 610–638.CrossRef PubMed
    59.Kapitein LC, Hoogenraad CC. Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 2011, 46: 9–20.CrossRef PubMed
    60.Namba T, Nakamuta S, Funahashi Y, Kaibuchi K. The role of selective transport in neuronal polarization. Dev Neurobiol 2011, 71: 445–457.CrossRef PubMed
    61.Kuijpers M, Hoogenraad CC. Centrosomes, microtubules and neuronal development. Mol Cell Neurosci 2011, 48: 349–358.CrossRef PubMed
    62.Xiao S, Jan LY. A gate keeper for axonal transport. Cell 2009, 136: 996–998.CrossRef PubMed
    63.Hirokawa N, Takemura R. Molecular motors in neuronal development, intracellular transport and diseases. Curr Opin Neurobiol 2004, 14: 564–573.CrossRef PubMed
    64.Heckman CA, Plummer HK, 3rd. Filopodia as sensors. Cell Signal 2013, 25: 2298–2311.CrossRef PubMed
    65.Edson K, Weisshaar B, Matus A. Actin Depolymerization Induces Process Formation on Map2-Transfected Nonneuronal Cells. Development 1993, 117: 689–700.PubMed
    66.Graziano BR, Weiner OD. Self-organization of protrusions and polarity during eukaryotic chemotaxis. Curr Opin Cell Biol 2014, 30: 60–67.CrossRef PubMed
    67.Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 2013, 256: 222–239.CrossRef PubMed
    68.Wu D. Signaling mechanisms for regulation of chemotaxis. Cell Res 2005, 15: 52–56.CrossRef PubMed
    69.Polleux F, Morrow T, Ghosh A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 2000, 404: 567–573.CrossRef PubMed
    70.Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo MM. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 2007, 129: 565–577.CrossRef PubMed
    71.McAllister AK, Katz LC, Lo DC. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 1997, 18: 767–778.CrossRef PubMed
    72.Gartner A, Fornasiero EF, Munck S, Vennekens K, Seuntjens E, Huttner WB, et al. N-cadherin specifies first asymmetry in developing neurons. EMBO J 2012, 31: 1893–1903.PubMedCentral CrossRef PubMed
    73.Janmey PA, Lindberg U. Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 2004, 5: 658–666.CrossRef PubMed
    74.Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 2010, 90: 259–289.CrossRef PubMed
    75.Shi SH, Jan LY, Jan YN. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 2003, 112: 63–75.CrossRef PubMed
    76.Jiang H, Guo W, Liang X, Rao Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 2005, 120: 123–135.PubMed
    77.Ketschek A, Gallo G. Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci 2010, 30: 12185–12197.PubMedCentral CrossRef PubMed
    78.Kim H, Binder LI, Rosenbaum JL. The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol 1979, 80: 266–276.CrossRef PubMed
    79.Schaefer AW, Kabir N, Forscher P. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 2002, 158: 139–152.PubMedCentral CrossRef PubMed
    80.Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR. Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 2008, 10: 1181–1189.CrossRef PubMed
  • 作者单位:Shu-Xin Zhang (1) (2)
    Li-Hui Duan (1) (2)
    Hong Qian (3)
    Xiang Yu (1)

    1. Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
    2. University of the Chinese Academy of Sciences, Beijing, 100049, China
    3. Department of Applied Mathematics, University of Washington, Seattle, Washington, 98195, USA
  • 刊物主题:Neurosciences; Human Physiology; Anesthesiology; Anatomy; Neurology; Pain Medicine;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1995-8218
文摘
A salient feature of neurons is their intrinsic ability to grow and extend neurites, even in the absence of external cues. Compared to the later stages of neuronal development, such as neuronal polarization and dendrite morphogenesis, the early steps of neuritogenesis remain relatively unexplored. Here we showed that redistribution of cortical actin into large aggregates preceded neuritogenesis and determined the site of neurite initiation. Enhancing actin polymerization by jasplakinolide treatment effectively blocked actin redistribution and neurite initiation, while treatment with the actin depolymerizing agents latrunculin A or cytochalasin D accelerated neurite formation. Together, these results demonstrate a critical role of actin dynamics and reorganization in neurite initiation. Further experiments showed that microtubule dynamics and protein synthesis are not required for neurite initiation, but are required for later neurite stabilization. The redistribution of actin during early neuronal development was also observed in the cerebral cortex and hippocampus in vivo. Keywords Neurite initiation Neuritogenesis Actin aggregations Actin Microtubules

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700