Biophysical studies of a ruthenium(II) polypyridyl complex binding to DNA and RNA prove that nucleic acid structure has significant effects on binding behaviors
详细信息    查看全文
文摘
The interactions of a metal complex [Ru(phen)2PMIP]2+ {Ru=ruthenium, phen=1,10-phenanthroline, PMIP=2-(4-methylphenyl)imidazo[4,5-f]1,10-phenanthroline} with yeast tRNA and calf thymus DNA (CT DNA) have been investigated comparatively by UV-vis spectroscopy, fluorescence spectroscopy, viscosity measurements, isothermal titration calorimetry (ITC), as well as equilibrium dialysis and circular dichroism (CD). Spectroscopic studies together with ITC and viscosity measurements indicate that both binding modes of the Ru(II) polypyridyl complex to yeast tRNA and CT DNA are intercalation and yeast tRNA binding of the complex is stronger than CT DNA binding. ITC experiments show that the interaction of the complex with yeast tRNA is driven by a moderately favorable enthalpy decrease in combination with a moderately favorable entropy increase, while the binding of the complex to CT DNA is driven by a large favorable enthalpy decrease with a less favorable entropy increase. The results from equilibrium dialysis and CD suggest that both interactions are enantioselective and the Δ enantiomer of the complex may bind more favorably to both yeast tRNA and CT DNA than the Λ enantiomer does, and that the complex is a better candidate for an enantioselective binder to yeast tRNA than to CT DNA. Taken together, these results indicate that the structures of nucleic acids have significant effects on the binding behaviors of metal complexes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700