Evaluation of a M-202 × Oryza nivara advanced backcross mapping population for seedling vigor, yield components and quality
详细信息    查看全文
  • 作者:Georgia C. Eizenga ; Péricles C. F. Neves ; Rolfe J. Bryant ; Hesham A. Agrama…
  • 关键词:Advanced backcross method ; QTL mapping population ; Amylose ; Alkali spreading value ; Interspecific cross ; Oryza sativa
  • 刊名:Euphytica
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:208
  • 期:1
  • 页码:157-171
  • 全文大小:524 KB
  • 参考文献:Ali ML, Sanchez PL, Yu S, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 3:218–234CrossRef
    Ali ML, McClung AM, Jia MH, Kimball JA, McCouch SR, Eizenga GC (2011) A rice diversity panel evaluated for genetic and agro-morphological diversity between subpopulations and its geographic distribution. Crop Sci 51:2021–2035CrossRef
    Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor Appl Genet 109:630–639CrossRef PubMed
    Ayres NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD (1997) Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet 94:773–781CrossRef
    Bergman CJ, Bhattacharya KR, Ohtsubo K (2004) Rice end-use quality analysis. In: Champagne ET (ed) Rice chemistry and technology. American Association of Cereal Chemists, St. Paul, pp 415–772CrossRef
    Bian J, Li C, He H, Shi H, Yan S (2014) Identification and analysis of QTLs for grain quality traits in rice using an introgression lines population. Euphytica 195:83–93CrossRef
    Brar DS, Singh K (2011) Oryza. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 321–365CrossRef
    Brondani C, Rangel PHN, Brondani RPV, Ferreira ME (2002) QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet 104:1192–1203CrossRef PubMed
    Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228CrossRef PubMed
    Chang TT, Bardenas EA (1965) The morphology and varietal characteristics of the rice plant. Tech Bull 4. Int Rice Res Inst, Los Baños, Philippines
    Chapman AL, Peterson ML (1962) The seedling establishment of rice under water in relation to temperature and dissolved oxygen. Crop Sci 2:391–395CrossRef
    Chen M-H, Fjellstrom RG, Christensen EF, Bergman CJ (2010) Development of three allele-specific codominant rice Waxy gene PCR markers suitable for marker-assisted selection of amylose content and paste viscosity. Mol Breed 26:513–523CrossRef
    Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693CrossRef PubMed
    Cui KH, Peng SB, Xing YZ, Xu CG, Yu SB, Zhang Q (2002) Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet 105:745–753CrossRef PubMed
    Eizenga GC, Prasad B, Jackson AK, Jia MH (2013) Identification of rice sheath blight and blast quantitative trait loci in two different O. sativa/O. nivara advanced backcross populations. Mol Breed 31:889–907CrossRef
    Eizenga GC, Ali ML, Bryant RJ, Yeater KM, McClung AM, McCouch SR (2014) Registration of the Rice Diversity Panel 1 for genome-wide association studies. J Plant Regist 8:109–116CrossRef
    Fjellstrom RG, Conaway-Bormans CA, McClung AM, Marchetti MA, Shank AR, Park WD (2004) Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci 44:1790–1798CrossRef
    Fjellstrom RG, McClung AM, Shank AR (2006) SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm. Mol Breed 17:149–157CrossRef
    Fu A, Zhang P, Tan L, Zhu A, Ma D, Fu Y, Zhan X, Cai H, Sun C (2010) Analysis of QTLs for yield related traits in Yuanjing common wild rice (Oryza rufipogon Griff.). J Genet Genom 37:147–157CrossRef
    Fuller DQ, Sato YI, Castillo C, Qin L, Weisskopf AR, Kingwell-Banham EJ, Song J, Ahn SM, van Etten J (2010) Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol Anthropol Sci. 2:115–131CrossRef
    Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638PubMedCentral CrossRef PubMed
    Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501CrossRef PubMed
    Imai I, Kimball JA, Conway B, Yeater KM, McCouch SR, McClung AM (2013) Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice. Mol Breed 32:101–120CrossRef
    Iwata N, Shinada H, Kiuchi H, Sato T, Fujino K (2010) Mapping of QTLs controlling seedling establishment using a direct seeding method in rice. Breed Sci 60:353–360CrossRef
    Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16:1–10CrossRef
    Jia Y, Redus M, Wang Z, Rutger JN (2004) Development of a SNLP marker from the Pi-ta blast resistance gene by tri-primer PCR. Euphytica 138:97–105CrossRef
    Jing Z, Qu Y, Chen Y, Pan D, Fan Z, Chen J, Li C (2010) QTL analysis of yield-related traits using an advanced backcross population derived from common wild rice (Oryza rufipogon L.). Mol Plant Breed 1:1–10. doi:10.​5376/​mpb.​2010.​01.​0001
    Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 23:2788–2789CrossRef
    Johnson CW, Carnahan HL, Tseng ST, Oster JJ, Hill JE (1986) Registration of M-202 rice. Crop Sci 26:198CrossRef
    Jones DB, Peterson ML (1976) Rice seedling vigor at sub-optimal temperatures. Crop Sci 16:102–105CrossRef
    Juliano BO (1985) Criteria and tests for rice grain qualities. In: Juliano BO (ed) Rice chemistry and technology, 2nd edn. American Association of Cereal Chemists, St. Paul, pp 443–524
    Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34CrossRef PubMed
    Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRef
    Larkin P, Park W (2003) Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Mol Breed 12:335–339CrossRef
    Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1255–1269
    Maas LF, McClung A, McCouch S (2010) Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theor Appl Genet 120:895–908CrossRef PubMed
    McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan LP, Ahn SN (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339CrossRef
    McKenzie KS, Johnson CW, Tseng ST, Oster JJ, Brandon DM (1994) Breeding improved rice cultivars for temperate regions—a case study. Aust J Exp Agric 34:897–905CrossRef
    Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:229–235CrossRef
    Neves, PCF (2002) Introgression of agronomic traits associated with molecular markers from Oryza nivara Sharma & Shastry and O. glaberrima Steud. into O. sativa L. PhD dissertation, University of California, Davis
    Ormrod DP, Bunter WA (1961) The evaluation of rice varieties for cold water tolerance. Agron J 53:133–134CrossRef
    Raney F (1963) Rice water temperature. Calif Agric 17:6–7
    Redoña ED, Mackill DJ (1996) Genetic variation for seedling vigor traits in rice. Crop Sci 36:285–290CrossRef
    SAS Institute (2008) The SAS system for Windows. Release 9.2. SAS Institute, Cary
    Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003a) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432CrossRef PubMed
    Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR (2003b) Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1433–1441CrossRef PubMed
    Shakiba E, Eizenga GC (2014) Unraveling the secrets of rice wild species. In: Yan WG, Bao J (eds) Rice – Germplasm, genetics and improvement. http://​dx.​doi.​org/​10.​5772/​58393 . Accessed 30 July 2015
    Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotech 27:141–150CrossRef
    Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 48:67–87CrossRef PubMed
    Swamy BPM, Kaladhar K, Shobhar Rani N, Prasad GSV, Viraktamath BC, Ashok Reddy G, Sarla N (2012) QTL analysis for grain quality traits in 2 BC2F2 populations derived from crosses between Oryza sativa cv Swarna and 2 accessions of O. nivara. J Hered 103:442–452CrossRef PubMed
    Tai T, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303CrossRef
    Tan L, Zang P, Liu F, Wang G, Ye S, Zhu Z, Fu Y, Cai H, Sun C (2008) Quantitative trait loci underlying domestication-and yield-related traits in an Oryza sativa x Oryza rufipogon advanced backcross population. Genome 51:692–704CrossRef PubMed
    Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066CrossRef PubMed
    Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203CrossRef PubMed
    Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRef
    Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493CrossRef PubMed
    Tung C-W, Zhao K, Wright M, Ali ML, Jung J, Kimball J, Tyagi W, Thomson MJ, McNally K, Leung H, Kim HJ, Ahn SN, Reynolds A, Scheffler B, Eizenga G, McClung AM, Bustamante C, McCouch SR (2010) Development of a research platform for dissecting phenotype genotype associations in rice (Oryza spp.). Rice 3:205–217CrossRef
    Umemoto T, Aoki N (2005) Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinization and starch association of the enzyme. Funct Plant Biol 32:763–768CrossRef
    Umemoto T, Aoki N, Lin H, Nakamura Y, Inouchi N, Sato Y, Yano M, Hirabayashi H, Maruyama S (2004) Natural variation in rice starch synthase IIa affects enzyme and starch properties. Funct Plant Biol 31:671–684CrossRef
    Van Berloo R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236CrossRef PubMed
    Van Ooijen JW (2006) JoinMap 4. Software for genetic linkage maps in experimental populations. Kayazma, Wageningen
    Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRef PubMed
    Wang Y, Li J (2008) Rice, rising. Nat Genet 40:1273–1275CrossRef PubMed
    Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909PubMedCentral PubMed
    Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa x Oryza rufipogon cross. Theor Appl Genet 116:613–622CrossRef PubMed
    Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898CrossRef PubMed
    Yuan PR, Kim HJ, Chen QH, Ju HG, Lee SJ, Ji SD, Ahn S-N (2009) QTL dissection of agronomic and domestication traits using introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (O. sativa L.) background. J Crop Sci Biotech 2:245–252CrossRef
    Zhang ZH, Qu X-S, Wan S, Chen L-H, Zhu Y-G (2005a) Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa). Ann Bot 95:423–429PubMedCentral CrossRef PubMed
    Zhang ZH, Yu SB, Yu T, Huang Z, Zhu YG (2005b) Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Res 91:161–170CrossRef
    Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Commun 2:467. doi:10.​1038/​ncomms1467 CrossRef
  • 作者单位:Georgia C. Eizenga (1)
    Péricles C. F. Neves (2) (3)
    Rolfe J. Bryant (1)
    Hesham A. Agrama (4) (5)
    David J. Mackill (6) (7)

    1. USDA-ARS Dale Bumpers National Rice Research Center, 2890 Highway 130 East, Stuttgart, AR, 72160, USA
    2. Department of Plant Sciences, University of California, Davis, CA, 95616, USA
    3. EMBRAPA Arroz e Feijão, C.P.179, 75-375-000-Sto., Antônio De Goiás, GO, Brazil
    4. University of Arkansas Rice Research and Extension Center, 2900 Highway 130 East, Stuttgart, AR, 72150, USA
    5. College of Agricultual and Marine Sciences, Sultan Qaboos University, 34, Al Khoud 123, Muscat, Oman
    6. USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA, 95616, USA
    7. Mars, Inc, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5060
文摘
Oryza nivara, the ancestral species of cultivated rice (O. sativa), has been the source of novel alleles for resistance to biotic and abiotic stress lost during domestication. Interspecific advanced backcross (ABC) populations permit the introgression of desirable alleles from the wild species into O. sativa and allow traits to be mapped to chromosomal regions by QTL mapping. An ABC population was developed by crossing M-202, a California medium grain, temperate japonica cultivar with O. nivara (IRGC100195). The population has 177 BC2F2:5 progeny lines and was evaluated for 17 traits including seedling vigor under cool temperature (mesocotyl, coleoptile, shoot and root lengths), agronomic (days to heading, plant height, culm angle, panicle type), yield components (panicles per plant, panicle length, florets and seeds per panicle, 100-seed weight) and quality [kernel length and width, apparent amylose content (AAC), alkali spreading value (ASV)]. Most exciting was that the O. nivara parent improved seedling vigor by increasing both the coleoptile and shoot lengths. Wild donor alleles increased the panicles per plant and seed weight, but M-202 alleles improved fertility. For one locus, the O. nivara alleles accounted for increased kernel length even though this parent had smaller seeds than M-202. The AAC mapped to the WAXY locus and ASV to the ALK locus, with most progeny being similar to M-202 for these quality traits. Select progeny lines could be useful for improving seedling vigor. This interspecific population is the first in the background of a U.S. temperate japonica rice cultivar.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700