δ-Opioid receptor (DOR) signaling and reactive oxygen species (ROS) mediate intermittent hypoxia induced protection of canine myocardium
详细信息    查看全文
  • 作者:Juan A. Estrada ; Arthur G. Williams Jr. ; Jie Sun…
  • 关键词:Cardiac arrhythmias ; Enkephalins ; Myocardial infarction ; N ; acetylcysteine ; Naltrindole
  • 刊名:Basic Research in Cardiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:111
  • 期:2
  • 全文大小:1,985 KB
  • 参考文献:1.Abdel-Wahab M, Khattab AA, Liska B, Kassner G, Geist V, Toelg R, Richardt G (2008) Diazepam versus fentanyl for premedication during percutaneous coronary intervention: results from the Myocardial Protection by Fentanyl during Coronary Intervention (PROFIT) Trial. J Interv Cardiol 21:232–238. doi:10.​1111/​j.​1540-8183.​2008.​00355.​x CrossRef PubMed
    2.Barron BA, Gu H, Gaugl JF, Caffrey JL (1992) Screening for opioids in dog heart. J Mol Cell Cardiol 24:67–77. doi:10.​1016/​0022-2828(92)91160-7 CrossRef PubMed
    3.Borges JP, Verdoorn KS, Daliry A, Powers SK, Ortenzi VH, Fortunato RS, Tibiriçá E, Lessa MA (2014) Delta opioid receptors: the link between exercise and cardioprotection. PLoS One 9:e113541. doi:10.​1371/​journal.​pone.​0113541 CrossRef PubMed PubMedCentral
    4.Bovo E, Lipsius SL, Zima AV (2012) Reactive oxygen species contribute to the development of arrhythmogenic Ca2+ waves during β-adrenergic receptor stimulation in rabbit cardiomyocytes. J Physiol 590:3291–3304. doi:10.​1113/​jphysiol.​2012.​230748 CrossRef PubMed PubMedCentral
    5.Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schröder E, Wait R, Begum S, Kentish JC, Eaton P (2006) Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem 281:21827–21836. doi:10.​1074/​jbc.​M603952200 CrossRef PubMed
    6.Brunet J, Boily M-J, Cordeau S, Des Rosiers C (1995) Effects of N-acetylcysteine in the rat heart reperfused after low-flow ischemia: evidence for a direct scavenging of hydroxyl radicals and a nitric oxide-dependent increase in coronary flow. Free Radic Biol Med 19:627–638. doi:10.​1016/​0891-5849(95)00077-B CrossRef PubMed
    7.Buelna-Chontal M, Guevara-Chávez JG, Silva-Palacios A, Medina-Campos ON, Pedraza-Chaverri J, Zazueta C (2014) Nrf2-regulated antioxidant response is activated by protein kinase C in postconditioned rat hearts. Free Radic Biol Med 74:145–156. doi:10.​1016/​j.​freeradbiomed.​2014.​06.​021 CrossRef PubMed
    8.Burtscher M, Pachinger O, Ehrenbourg I, Mitterbauer G, Faulhaber M, Pühringer R, Tkatchouk E (2004) Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol 96:247–254. doi:10.​1016/​j.​ijcard.​2003.​07.​021 CrossRef PubMed
    9.Cabassi A, Dumont EC, Girouard H, Bouchard JF, Le Jossec M, Lamontagne D, Besner JG, de Champlain J (2001) Effects of chronic N-acetylcysteine treatment on the actions of peroxynitrite on aortic vascular reactivity in hypertensive rats. J Hypertens 19:1233–1244CrossRef PubMed
    10.Cohen MV, Downey JM (2015) Signaling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br J Pharmacol 172:1913–1932. doi:10.​1111/​bph.​12903 CrossRef PubMed
    11.Curtis MJ, Hancox JC, Farkas A, Wainwright CL, Stables CL, Saint DA, Clements-Jewery H, Lambaise PD, Billman GE, Janse MJ, Pugsley MK, Ng GA, Roden DM, Camm AJ, Walker MJA (2013) The Lambeth conventions (II): guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther 139:213–248. doi:10.​1016/​j.​pharmthera.​2013.​04.​008 CrossRef PubMed
    12.Das DK, Maulik N, Sato M, Ray PS (1999) Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem 196:59–67. doi:10.​1023/​A:​1006966128795 CrossRef PubMed
    13.Dickson EW, Hogrefe CP, Ludwig PS, Ackermann LW, Stoll LL, Denning GM (2008) Exercise enhances myocardial ischemic tolerance via an opioid receptor-dependent mechanism. Am J Physiol Heart Circ Physiol 294:H402–H408. doi:10.​1152/​ajpheart.​00280.​2007 CrossRef PubMed
    14.Gross ER, Hsu AK, Gross GJ (2006) The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3β. Am J Physiol Heart Circ Physiol 291:H827–H834. doi:10.​1152/​ajpheart.​00003.​2006 CrossRef PubMed
    15.Gross GJ, Baker JE, Moore J, Falck JR, Nithipatikom K (2011) Abdominal surgical incision induces remote preconditioning of trauma (RPCT) via activation of bradykinin receptors (BK2R) and the cytochrome P450 epoxygenase pathway in canine hearts. Cardiovasc Drugs Ther 25:517–522. doi:10.​1007/​s10557-001-6321-9 CrossRef PubMed PubMedCentral
    16.Gross GJ, Lockwood SF (2005) Acute and chronic administration of disodium disuccinate astaxanthin (Cardax) produces marked cardioprotection in dog hearts. Mol Cell Biochem 272:221–227. doi:10.​1007/​s11010-005-7555-2 CrossRef PubMed
    17.Haider T, Casucci G, Linser T, Faulhaber M, Gatterer H, Ott G, Linser A, Ehrenbourg I, Tkatchouk E, Burtscher M, Bernardi L (2009) Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. J Hypertens 27:1648–1654. doi:10.​1097/​HJH.​0b013e32832c0018​ CrossRef PubMed
    18.Hayashi T, Yamashita C, Matsumoto C, Kwak CJ, Fujii K, Hirata T, Miyamura M, Mori T, Ukimura A, Okada Y, Matsumura Y, Kitaura Y (2008) Role of gp91phox-containing NADPH oxidase in left ventricular remodeling induced by intermittent hypoxic stress. Am J Physiol Heart Circ Physiol 294:H2197–H2203. doi:10.​1152/​ajpheart.​91496.​2007 CrossRef PubMed
    19.Headrick JP, See Hoe LE, Du Toit EF, Peart JN (2014) Opioid receptors and cardioprotection—‘opioidergic conditioning’ of the heart. Br J Pharmacol 172:2026–2050. doi:10.​1111/​bph.​13042 CrossRef
    20.Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi:10.​1161/​CIRCRESAHA.​116.​305348 CrossRef PubMed
    21.Heymann MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 20:55–79. doi:10.​1016/​S0033-0620(77)80005-4 CrossRef PubMed
    22.Holgert H, Pequignot JM, Lagercrantz H, Hökfelt T (1995) Birth-related up-regulation of mRNA encoding tyrosine hydroxylase, dopamine beta-hydroxylase, neuropeptide tyrosine, and prepro-enkephalin in rat adrenal medulla is dependent on postnatal oxygenation. Pediatr Res 37:701–706. doi:10.​1203/​00006450-199506000-00005 CrossRef PubMed
    23.Huang MH, Nguyen V, Wu Y, Rastogi S, Lui CY, Birnbaum Y, Wang HQ, Ware DL, Chauhan M, Garg N, Poh KK, Ye L, Omar AR, Tan HC, Uretsky BF, Fujise K (2009) Reducing ischaemia/reperfusion injury through delta-opioid-regulated intrinsic cardiac adrenergic cells: adrenopeptidergic co-signalling. Cardiovasc Res 84:452–460. doi:10.​1093/​cvr/​cvp233 CrossRef PubMed
    24.Jackson KE, Farias M, Stanfill AS, Caffrey JL (2001) Transient arterial occlusion raises enkephalin in the canine sinoatrial node and improves vagal bradycardia. Auton Neurosci 94:84–92. doi:10.​1016/​S1566-0702(01)00351-4 CrossRef PubMed
    25.Jang Y, Xi J, Wang H, Mueller RA, Norfleet EA, Xu Z (2008) Postconditioning prevents reperfusion injury by activating delta-opioid receptors. Anesthesiology 108:243–250. doi:10.​1097/​01.​anes.​0000299437.​93898.​4a CrossRef PubMed
    26.Jones WK, Fan GC, Liao S, Zhang JM, Wang Y, Weintraub NL, Kranias EG, Schultz JE, Lorenz J, Ren X (2009) Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation 120(Suppl 1):S1–S9. doi:10.​1161/​CIRCULATIONAHA.​108.​843938 CrossRef PubMed PubMedCentral
    27.Kersten JR, Schmeling TJ, Pagel PS, Gross GJ, Warltier DC (1997) Isoflurane mimics ischemic preconditioning via activation of K(ATP) channels: reduction of myocardial infarct size with an acute memory phase. Anesthesiology 87:361–370CrossRef PubMed
    28.Khaliulin I, Parker JE, Halestrap AP (2010) Consecutive pharmacological activation of PKA and PKC mimics the potent cardioprotection of temperature preconditioning. Cardiovasc Res 88:324–333. doi:10.​1093/​cvr/​cvq190 CrossRef PubMed PubMedCentral
    29.Kingma JG Jr, Simard D, Voisine P, Rouleau JR (2011) Role of the autonomic nervous system in cardioprotection by remote preconditioning in isoflurane-anaesthetized dogs. Cardiovasc Res 89:384–391. doi:10.​1093/​cvr/​cvq306 CrossRef PubMed
    30.Kingma JG, Simard D, Voisine P, Rouleau JR (2013) Influence of cardiac decentralization on cardioprotection. PLoS One 8:e79190. doi:10.​1371/​journal.​pone.​0079190 CrossRef PubMed PubMedCentral
    31.Kleinbongard P, Heusch G (2015) Extracellular signalling molecules in the ischaemic/reperfused heart—druggable and translatable for cardioprotection? Br J Pharmacol 172:2010–2025. doi:10.​1111/​bph.​12902 CrossRef PubMed
    32.Kolamunne RT, Dias IH, Vernallis AB, Grant MM, Griffiths HR (2013) Nrf2 activation supports cell survival during hypoxia and hypoxia/reoxygenation in cardiomyoblasts. Redox Biol 1:418–426. doi:10.​1016/​j.​redox.​2013.​08.​002 CrossRef PubMed PubMedCentral
    33.Kolář F, Ježková J, Balková P, Břeh J, Neckář J, Novák F, Nováková O, Tomášová H, Srbová M, Ošt’ádal B, Wilhelm J, Herget J (2007) Role of oxidative stress in PKC-δ upregulation and cardioprotection by chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol 292:H224–H230. doi:10.​1152/​ajpheart.​00689.​2006 PubMed
    34.Kolář F, Neckár J, Ošt’ádal B, Maslov LN, Stakheev DL, Tayurskaya AS, Lishmanov YB (2008) Role of ATP-sensitive K+-channels in antiarrhythmic and cardioprotective action of adaptation to intermittent hypobaric hypoxia. Bull Exp Biol Med 145:418–421. doi:10.​1007/​s10517-008-0106-6 CrossRef PubMed
    35.Korge P, Ping P, Weiss JN (2008) Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide. Circ Res 103:873–880. doi:10.​1161/​CIRCRESAHA.​108.​180869 CrossRef PubMed PubMedCentral
    36.Lyamina NP, Lyamina SV, Senchiknin VN, Mallet RT, Downey HF, Manukhina EB (2011) Normobaric hypoxia conditioning reduces blood pressure and normalizes nitric oxide synthesis in patients with arterial hypertension. J Hypertens 29:2265–2272. doi:10.​1097/​HJH.​0b013e32834b5846​ CrossRef PubMed
    37.Mallet RT, Ryou MG, Williams AG Jr, Howard L, Downey HF (2006) β1-adrenergic receptor antagonism abrogates cardioprotective effects of intermittent hypoxia. Basic Res Cardiol 101:436–446. doi:10.​1007/​s00395-006-0599-y CrossRef PubMed
    38.Martinez AM, Padbury JF, Burnell EE, Thio SL, Humme J (1990) The effects of hypoxia on (methionine) encephalin peptide and catecholamine release in fetal sheep. Pediatr Res 27:52–55. doi:10.​1203/​00006450-199001000-00016 CrossRef PubMed
    39.Maslov LN, Lishmanov YB, Krylatov AV, Sementsov AS, Portnichenko AG, Podoksenov YK, Khaliulin IG (2014) Comparative analysis of early and delayed cardioprotective and antiarrhythmic efficacy of hypoxic preconditioning. Bull Exp Biol Med 156(6):746–749. doi:10.​1007/​s10517-014-2439-7 CrossRef PubMed
    40.Maslov LN, Naryzhnaia NV, Tsibulnikov SY, Kolar F, Zhang Y, Wang H, Gusakova AM, Lishmanov YB (2013) Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci 93:373–379. doi:10.​1016/​j.​lfs.​2013.​07.​018 CrossRef PubMed
    41.Medved I, Brown MJ, Bjorksten AR, Leppik JA, Sostaric S, McKenna MJ (2003) N-acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. J Appl Physiol 94:1572–1582. doi:10.​1152/​japplphysiol.​00884.​2002 CrossRef PubMed
    42.Mei DA, Gross GJ (1995) Evidence for the involvement of the ATP-sensitive potassium channel in a novel model of hypoxic preconditioning in dogs. Cardiovasc Res 30:222–230. doi:10.​1016/​S0008-6363(95)00023-2 CrossRef PubMed
    43.Merrill GF, Rork TH, Spiler NM, Golfetti R (2004) Acetaminophen and myocardial infarction in dogs. Am J Physiol Heart Circ Physiol 287:H1913–H1920. doi:10.​1152/​ajpheart.​00565.​2004 CrossRef PubMed
    44.Miller LE, McGinnis GR, Peters BA, Ballmann CG, Nanayakkara G, Amin R, Quindry JC (2015) Involvement of the δ-opioid receptor in exercise-induced cardioprotection. Exp Physiol 100:410–421. doi:10.​1113/​expphysiol.​2014.​083436 CrossRef PubMed
    45.Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. doi:10.​1161/​01.​CIR.​74.​5.​1124 CrossRef PubMed
    46.Muthusamy VR, Kannan S, Sadhaasivam K, Gounder SS, Davidson CJ, Boeheme C, Hoidal JR, Wang L, Rajasekaran NS (2012) Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol Med 52:366–376. doi:10.​1016/​j.​freeradbiomed.​2011.​10.​440 CrossRef PubMed PubMedCentral
    47.Nagasaka S, Katoh H, Niu CF, Matsui S, Urushida T, Satoh H, Watanabe Y, Hayashi H (2007) Protein kinase A catalytic subunit alters cardiac mitochondrial redox state and membrane potential via the formation of reactive oxygen species. Circ J 71:429–436. doi:10.​1253/​circj.​71.​429 CrossRef PubMed
    48.Peart JN, Patel HH, Gross GJ (2003) Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J Cardiovasc Pharmacol 42:78–81. doi:10.​1097/​00005344-200307000-00012 CrossRef PubMed
    49.Peart JN, See Hoe LE, Gross GJ, Headrick JP (2011) Sustained ligand-activated preconditioning via δ-opioid receptors. J Pharmacol Exp Ther 336:274–281. doi:10.​1124/​jpet.​110.​172593 CrossRef PubMed PubMedCentral
    50.Pepe S, van den Brink OW, Lakatta EG, Xiao RP (2004) Cross-talk of opioid peptide receptor and beta-adrenergic receptor signalling in the heart. Cardiovasc Res 63:414–422. doi:10.​1016/​j.​cardiores.​2004.​04.​022 CrossRef PubMed
    51.Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899. doi:10.​1161/​01.​CIR.​87.​3.​893 CrossRef PubMed
    52.Ray PS, Estrada-Hernandez T, Sasaki H, Zhu L, Maulik N (2000) Early effects of hypoxia/reoxygenation on VEGF, ang-1, ang-2 and their receptors in the rat myocardium: implications for myocardial angiogenesis. Mol Cell Biochem 213:145–153. doi:10.​1023/​A:​1007180518474 CrossRef PubMed
    53.Salie R, Moolman JA, Lochner A (2012) The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation. Basic Res Cardiol 107:281–302. doi:10.​1007/​s00395-012-0281-5 CrossRef PubMed
    54.Schultz JE, Rose E, Yao Z, Gross G (1995) Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol Heart Circ Physiol 268:H2157–H2161
    55.Schulz R, Gres P, Heusch G (2001) Role of endogenous opioids in ischemic preconditioning but not in short-term hibernation in pigs. Am J Physiol Heart Circ Physiol 280:H2175–H2181PubMed
    56.Schwartz LM, Verbinski SG, Vander Heide RS, Reimer KA (1997) Epicardial temperature is a major predictor of myocardial infarct size in dogs. J Mol Cell Cardiol 29:1577–1583. doi:10.​1006/​jmcc.​1997.​0391 CrossRef PubMed
    57.See Hoe LE, Headrick J, Peart J (2014) Chronic & #x03B2;1-blockade impairs ischemic tolerance and preconditioning in murine myocardium. FASEB J 28:652.2 (abstract)
    58.See Hoe LE, Schilling JM, Tarbit E, Kiessling CJ, Busija AR, Niesman IR, Du Toit E, Ashton KJ, Roth DM, Headrick JP, Patel HH, Peart JN (2014) Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection. Am J Physiol Heart Circ Physiol 307:H895–H903. doi:10.​1152/​ajpheart.​00081.​2014 CrossRef PubMed PubMedCentral
    59.Shizukuda Y, Mallet RT, Lee SC, Downey HF (1992) Hypoxic preconditioning of ischaemic canine myocardium. Cardiovasc Res 26:534–542. doi:10.​1093/​cvr/​26.​5.​534 CrossRef PubMed
    60.Skyschally A, Schulz R, Gres P, Korth HG, Heusch G (2003) Attenuation of ischemic preconditioning in pigs by scavenging of free oxyradicals with ascorbic acid. Am J Physiol Heart Circ Physiol 284:H698–H703. doi:10.​1152/​ajpheart.​00693.​2002 CrossRef PubMed
    61.Surendra H, Diaz RJ, Harvey K, Tropak M, Callahan J, Hinek A, Hossain T, Redington A, Wilson GJ (2013) Interaction of δ and κ opioid receptors with adenosine A1 receptors mediates cardioprotection by remote ischemic preconditioning. J Mol Cell Cardiol 60:142–150. doi:10.​1016/​j.​yjmcc.​2013.​04.​010 CrossRef PubMed
    62.Toller WG, Kersten JR, Pagel PS, Hettrick DA, Warltier DC (1999) Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning in dogs. Anesthesiology 91:1437–1446CrossRef PubMed
    63.Wang ZH, Chen YX, Zhang CM, Wu L, Yu Z, Cai XL, Guan Y, Zhou ZN, Yang HT (2011) Intermittent hypobaric hypoxia improves postischemic recovery of myocardial contractile function via redox signaling during early reperfusion. Am J Physiol Heart Circ Physiol 301:H1695–H1705. doi:10.​1152/​ajpheart.​00276.​2011 CrossRef PubMed
    64.Weil J, Zolk O, Griepentrog J, Wenzel U, Zimmermann WH, Eschenhagen T (2006) Alterations of the preproenkephalin system in cardiac hypertrophy and its role in atrioventricular conduction. Cardiovasc Res 69:412–422. doi:10.​1016/​j.​cardiores.​2005.​10.​016 CrossRef PubMed
    65.Werns SW, Grum CM, Ventura A, Hahn RA, Ho PP, Towner RD, Fantone JC, Schork MA, Lucchesi BR (1991) Xanthine oxidase inhibition does not limit canine infarct size. Circulation 83:995–1005. doi:10.​1161/​01.​CIR.​83.​3.​995 CrossRef PubMed
    66.Yao Z, Gross GJ (1993) Acetylcholine mimics ischemic preconditioning via a glibenclamide-sensitive mechanism in dogs. Am J Physiol Heart Circ Physiol 264:H2221–H2225
    67.Yellon DM, Downey JM (2003) Preconditioning the myocardium: From cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151. doi:10.​1152/​physrev.​00009.​2003 CrossRef PubMed
    68.Zatta AJ, Kin H, Yoshishige D, Jiang R, Wang N, Reeves JG, Mykytenko J, Guyton RA, Zhao ZQ, Caffrey JL, Vinten-Johansen J (2008) Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. Am J Physiol Heart Circ Physiol 294:H1444–H1451. doi:10.​1152/​ajpheart.​01279.​2006 CrossRef PubMed
    69.Zhu H, Jia Z, Misra BR, Zhang L, Cao Z, Yamamoto M, Trush MA, Misra HP, Li Y (2008) Nuclear factor E2-related factor 2-dependent myocardiac cytoprotection against oxidative and electrophilic stress. Cardiovasc Toxicol 8:71–85. doi:10.​1007/​s12012-008-9016-0 CrossRef PubMed
    70.Zong P, Setty S, Sun W, Martinez R, Tune JD, Ehrenbourg IV, Tkatchouk EN, Mallet RT, Downey HF (2004) Intermittent hypoxic training protects canine myocardium from infarction. Exp Biol Med 229:806–812
  • 作者单位:Juan A. Estrada (1)
    Arthur G. Williams Jr. (1)
    Jie Sun (1)
    Leticia Gonzalez (1)
    H. Fred Downey (1)
    James L. Caffrey (1)
    Robert T. Mallet (1)

    1. Institute of Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, USA
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1803
文摘
Intermittent, normobaric hypoxia confers robust cardioprotection against ischemia-induced myocardial infarction and lethal ventricular arrhythmias. δ-Opioid receptor (DOR) signaling and reactive oxygen species (ROS) have been implicated in cardioprotective phenomena, but their roles in intermittent hypoxia are unknown. This study examined the contributions of DOR and ROS in mediating intermittent hypoxia-induced cardioprotection. Mongrel dogs completed a 20 day program consisting of 5–8 daily, 5–10 min cycles of moderate, normobaric hypoxia (FIO2 0.095–0.10), with intervening 4 min room air exposures. Subsets of dogs received the DOR antagonist naltrindole (200 μg/kg, sc) or antioxidant N-acetylcysteine (250 mg/kg, po) before each hypoxia session. Twenty-four hours after the last session, the left anterior descending coronary artery was occluded for 60 min and then reperfused for 5 h. Arrhythmias detected by electrocardiography were scored according to the Lambeth II conventions. Left ventricles were sectioned and stained with 2,3,5-triphenyl-tetrazolium-chloride, and infarct sizes were expressed as percentages of the area at risk (IS/AAR). Intermittent hypoxia sharply decreased IS/AAR from 41 ± 5 % (n = 12) to 1.8 ± 0.9 % (n = 9; P < 0.001) and arrhythmia score from 4.1 ± 0.3 to 0.7 ± 0.2 (P < 0.001) vs. non-hypoxic controls. Naltrindole (n = 6) abrogated the cardioprotection with IS/AAR 35 ± 5 % and arrhythmia score 3.7 ± 0.7 (P < 0.001 vs. untreated intermittent hypoxia). N-acetylcysteine (n = 6) interfered to a similar degree, with IS/AAR 42 ± 3 % and arrhythmia score 4.7 ± 0.3 (P < 0.001 vs. untreated intermittent hypoxia). Without the intervening reoxygenations, hypoxia (n = 4) was not cardioprotective (IS/AAR 50 ± 8 %; arrhythmia score 4.5 ± 0.5; P < 0.001 vs. intermittent hypoxia). Thus DOR, ROS and cyclic reoxygenation were obligatory participants in the gradually evolving cardioprotection produced by intermittent hypoxia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700