用户名: 密码: 验证码:
Automatic implementation of finite strain anisotropic hyperelastic models using hyper-dual numbers
详细信息    查看全文
  • 作者:Ravi Kiran (1)
    Kapil Khandelwal (1)

    1. Department of Civil and Environmental Engineering and Earth Sciences
    ; University of Notre Dame ; Notre Dame ; IN ; 46556 ; USA
  • 关键词:Hyper ; dual numbers ; Anisotropic hyperelastic models ; Automatic implementation ; Finite difference methods ; Constitutive modeling
  • 刊名:Computational Mechanics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:55
  • 期:1
  • 页码:229-248
  • 全文大小:1,247 KB
  • 参考文献:1. Holzapfel G, Gasser T, Ogden R (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity Phys Sci Solids 61:1鈥?8. doi:10.1023/a:1010835316564 CrossRef
    2. Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107鈥?28. doi:10.1016/0045-7825(96)01035-3 CrossRef
    3. Dorfmann AL, Woods WA, Trimmer BA (2008) Muscle performance in a soft-bodied terrestrial Crawler: constitutive modelling of strain-rate dependency. J R Soc Interface 5:349鈥?62. doi:10.1098/rsif.2007.1076 CrossRef
    4. Peng X, Guo G, Zhao N (2013) An anisotropic hyperelastic constitutive model with shear interaction for cord-rubber composites. Compos Sci Technol 78:69鈥?4. doi:10.1016/j.compscitech.2013.02.005 CrossRef
    5. Brown LW, Smith LM (2011) A simple transversely isotropic hyperelastic constitutive model suitable for finite element analysis of fiber reinforced elastomers. J Eng Mater Technol 133:021021鈥?21021. doi:10.1115/1.4003517 CrossRef
    6. Ball J (1976) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63:337鈥?03. doi:10.1007/bf00279992 CrossRef
    7. Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solids Struct 40:2767鈥?791. doi:10.1016/S0020-7683(03)00086-6 CrossRef
    8. Schr枚der J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40:401鈥?45. doi:10.1016/S0020-7683(02)00458-4 CrossRef
    9. Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Methods Appl Mech Eng 134:223鈥?40. doi:10.1016/0045-7825(96)01019-5 CrossRef
    10. Kiran R, Khandelwal K (2014) Complex step derivative approximation for numerical evaluation of tangent moduli. Comput Struct. doi:10.1016/j.compstruc.2014.04.009
    11. P茅rez-Foguet A, Rodr谋矛guez-Ferran A, Huerta A (2000) Numerical differentiation for local and global tangent operators in computational plasticity. Comput Methods Appl Mech Eng 189:277鈥?96. doi:10.1016/S0045-7825(99)00296-0 CrossRef
    12. Tanaka M, Fujikawa M, Balzani D, Schr枚der J (2014) Robust numerical calculation of tangent moduli at finite strains based on complex-step derivative approximation and its application to localization analysis. Comput Methods Appl Mech Eng 269:454鈥?70. doi:10.1016/j.cma.2013.11.005 CrossRef
    13. Jeffrey F, Juan A (2011) The development of hyper-dual numbers for exact second-derivative calculations 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (aerospace sciences meetings). American Institute of Aeronautics and Astronautics, Nashville
    14. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, West Sussex
    15. Korelc J (2008) Automation of finite element method by J. Korelc. In: Wriggers P (ed) Nonlinear finite element methods. Springer, Heidelberg, pp 483鈥?08
    16. Young JM, Yao J, Ramasubramanian A, Taber LA, Perucchio R (2010) Automatic generation of user material subroutines for biomechanical growth analysis. J Biomech Eng 132:104505鈥?04505. doi:10.1115/1.4002375 CrossRef
    17. Korelc J (1997) Automatic generation of finite-element code by simultaneous optimization of expressions. Theor Comput Sci 187:231鈥?48. doi:10.1016/S0304-3975(97)00067-4 CrossRef
    18. Sun W, Chaikof EL, Levenston ME (2008) Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models. J Biomech Eng 130:1鈥?. doi:10.1115/1.2979872 CrossRef
    19. P茅rez-Foguet A, Rodr铆guez-Ferran A, Huerta A (2000) Numerical differentiation for non-trivial consistent tangent matrices: an application to the MRS-Lade model. Int J Numer Methods Eng 48:159鈥?84. doi:10.1002/(sici)1097-0207(20000520)48:2<159:aid-nme871>3.0.co;2-y
    20. Martins JRRA, Sturdza P, Alonso JJ (2003) The complex-step derivative approximation. ACM Trans Math Softw 29:245鈥?62. doi:10.1145/838250.838251 CrossRef
    21. Lai KL, Crassidis JL (2008) Extensions of the first and second complex-step derivative approximations. J Comput Appl Math 219:276鈥?93. doi:10.1016/j.cam.2007.07.026
    22. Blatz PJ, Ko WL (1962) Application of finite elastic theory to the deformation of rubbery materials. Trans Soc Rheol (1957鈥?977) 6:223鈥?52. doi:10.1122/1.548937 CrossRef
    23. Kiran R, Khandelwal K (2014) Numerically approximated Cauchy integral (NACI) for implementation of constitutive models. Finite Elem Anal Des 89:33鈥?1. doi:10.1016/j.finel.2014.05.016
    24. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, New York
    25. Balzani D, Neff P, Schr枚der J, Holzapfel GA (2006) A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43:6052鈥?070. doi:10.1016/j.ijsolstr.2005.07.048 CrossRef
    26. Rall LB (1986) The arithmetic of differentiation. Math Mag 59:275鈥?82. doi:10.2307/2689402 CrossRef
    27. Griewank A, Walther A (2008) Evaluating derivatives. Society for Industrial and Applied Mathematics, Philadelphia
    28. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008:1鈥?0. doi:10.1109/ieeestd.2008.4610935
    29. Kirby RC, Knepley M, Logg A, Scott LR (2005) Optimizing the evaluation of finite element matrices. SIAM J Sci Comput 27:741鈥?58. doi:10.1137/040607824 CrossRef
    30. Yu W, Blair M (2013) DNAD, a simple tool for automatic differentiation of Fortran codes using dual numbers. Comput Phys Commun 184:1446鈥?452. doi:10.1016/j.cpc.2012.12.025 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Numerical and Computational Methods in Engineering
    Computational Science and Engineering
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0924
文摘
The main aim of this paper is to automate the implementation of finite strain anisotropic hyperelastic models into a general finite element framework. The automation presented in this paper enables the end-user to implement a hyperelastic model by programming its Helmholtz free energy function alone. The automation is achieved by employing hyper-dual number system to evaluate analytical quality derivatives. New perturbation techniques are introduced and are employed to extend the hyper-dual numbers system to evaluate tensor derivatives. The capability of the proposed automation scheme is demonstrated by implementing five finite strain anisotropic hyperelastic models. The merits and demerits of the proposed automation scheme are compared to an automation scheme based on the central difference method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700