Novelty detection is enhanced when attention is otherwise engaged: an event-related potential study
详细信息    查看全文
  • 作者:J. Schomaker (1)
    M. Meeter (1)
  • 关键词:Anterior N2 ; Novelty ; Working memory ; Attention ; P3a ; Principal component analysis
  • 刊名:Experimental Brain Research
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:232
  • 期:3
  • 页码:995-1011
  • 全文大小:1,774 KB
  • 参考文献:1. Barkaszi I, Czigler I, Balazs L (2013) Stimulus complexity effects on the event-related potentials to task-irrelevant stimuli. Biol Psychol 94:82鈥?9. doi:10.1016/j.biopsycho.2013.05.007 CrossRef
    2. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129鈥?159 CrossRef
    3. Berti S (2008) Object switching within working memory is reflected in the human event-related brain potential. Neurosci Lett 434:200鈥?05. doi:10.1016/j.neulet.2008.01.055 CrossRef
    4. Berti S, Schroger E (2003) Working memory controls involuntary attention switching: evidence from an auditory distraction paradigm. Eur J Neurosci 17:1119鈥?122. doi:10.1046/j.1460-9568.2003.02527.x CrossRef
    5. Botvinick MW, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108:624鈥?52 CrossRef
    6. Braver TS, Barch DM, Gray JR, Molfese DL, Snyder A (2001) Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb Cortex 11:825鈥?36 CrossRef
    7. Cattell RB (1966) Scree test for number of factors. Multivar Behav Res 1:245鈥?76. doi:10.1207/s15327906mbr0102_10 CrossRef
    8. Chong H, Riis JL, McGinnis SM, Williams DM, Holcomb PJ, Daffner KR (2008) To ignore or explore: top-down modulation of novelty processing. J Cogn Neurosci 20:120鈥?34 CrossRef
    9. Combs LA, Polich J (2006) P3a from auditory white noise stimuli. Clin Neurophysiol 117:1106鈥?112. doi:10.1016/j.clinph.2006.01.023 CrossRef
    10. Comerchero MD, Polich J (1998) P3a, perceptual distinctiveness, and stimulus modality. Brain Res Cogn Brain Res 7:41鈥?8 CrossRef
    11. Comerchero MD, Polich J (1999) P3a and P3b from typical auditory and visual stimuli. Clin Neurophysiol 110:24鈥?0 CrossRef
    12. Courchesne E, Hillyard SA, Galambos R (1975) Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalogr Clin Neurophysiol 39:131鈥?43 CrossRef
    13. Daffner KR, Mesulam MM, Scinto LF, Cohen LG, Kennedy BP, West WC, Holcomb PJ (1998) Regulation of attention to novel stimuli by frontal lobes: an event-related potential study. NeuroReport 9:787鈥?91 CrossRef
    14. Daffner KR, Mesulam MM, Scinto LF, Calvo V, Faust R, Holcomb PJ (2000) An electrophysiological index of stimulus unfamiliarity. Psychophysiology 37:737鈥?47 CrossRef
    15. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9鈥?1. doi:10.1016/j.jneumeth.2003.10.009 CrossRef
    16. Dien J (1998) Addressing misallocation of variance in principal components analysis of event-related potentials. Brain Topogr 11:43鈥?5 CrossRef
    17. Dien J (2010) The ERP PCA Toolkit: an open source program for advanced statistical analysis of event-related potential data. J Neurosci Methods 187:138鈥?45. doi:10.1016/j.jneumeth.2009.12.009 CrossRef
    18. Dien J (2012) Applying principal components analysis to event-related potentials: a tutorial. Dev Neuropsychol 37:497鈥?17. doi:10(1080/87565641).2012.697503 CrossRef
    19. Dien J, Spencer KM, Donchin E (2003) Localization of the event-related potential novelty response as defined by principal components analysis. Brain Res Cogn Brain Res 17:637鈥?50 CrossRef
    20. Dien J, Khoe W, Mangun GR (2007) Evaluation of PCA and ICA of simulated ERPs: promax vs. infomax rotations. Hum Brain Mapp 28:742鈥?63. doi:10.1002/Hbm.20304 CrossRef
    21. Donchin E (1981) Presidential address, 1980. Surprise!鈥urprise? Psychophysiology 18:493鈥?13 CrossRef
    22. Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating. Behav Brain Sci 11:357鈥?74 CrossRef
    23. Donkers FCL, van Boxtel GJM (2004) The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain Cogn 56:165鈥?76. doi:10.1016/j.bandc.2004.04.005 CrossRef
    24. Duncan-Johnson CC, Donchin E (1977) On quantifying surprise: the variation of event-related potentials with subjective probability. Psychophysiology 14:456鈥?67 CrossRef
    25. Eimer M, Kiss M, Press C, Sauter D (2009) The roles of feature-specific task set and bottom-up salience in attentional capture: an ERP study. J Exp Psychol Hum Percept Perform 35:1316鈥?328. doi:10.1037/a0015872 CrossRef
    26. Escera C, Alho K, Winkler I, Naatanen R (1998a) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10:590鈥?04 CrossRef
    27. Escera C, Alho K, Winkler I, N盲盲t盲nen R (1998b) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10:590鈥?04. doi:10.1162/089892998562997 CrossRef
    28. Escera C, Alho K, Schroger E, Winkler I (2000) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5:151鈥?66 CrossRef
    29. Escera C, Yago E, Alho K (2001) Electrical responses reveal the temporal dynamics of brain events during involuntary attention switching. Eur J Neurosci 14:877鈥?83. doi:10.1046/j.0953-816x.2001.01707.x CrossRef
    30. Folstein JR, Van Petten C (2008) Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45:152鈥?70 CrossRef
    31. Folstein JR, Van Petten C, Rose SA (2008) Novelty and conflict in the categorization of complex stimuli. Psychophysiology 45:467鈥?79. doi:10.1111/j.1469-8986.2007.00628.x CrossRef
    32. Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain鈥檚 evaluation of novelty. Neurosci Biobehav Rev 25:355鈥?73 CrossRef
    33. Fu SM, Fan SL, Chen L (2003) Event-related potentials reveal involuntary processing of orientation changes in the visual modality. Psychophysiology 40:770鈥?75. doi:10.1111/1469-8986.00077 CrossRef
    34. Goldstein A, Spencer KM, Donchin E (2002) The influence of stimulus deviance and novelty on the P300 and Novelty P3. Psychophysiology 39:781鈥?90 CrossRef
    35. He B, Lian J, Spencer KM, Dien J, Donchin E (2001) A cortical potential imaging analysis of the P300 and novelty P3 components. Hum Brain Mapp 12:120鈥?30. doi:10.1002/1097-0193(200102)12:2<120:AID-HBM1009>3.0.CO;2-V CrossRef
    36. Hendrickson AE, White PO (1964) Promax鈥攁 quick method for rotation to oblique simple structure. Br J Stat Psychol 17:65鈥?0 CrossRef
    37. Hillyard SA, Kutas M (1983) Electrophysiology of cognitive processing. Annu Rev Psychol 34:33鈥?1. doi:10.1146/annurev.ps.34.020183.000341 CrossRef
    38. Holdstock JS, Rugg MD (1995) The effect of attention on the P300 deflection elicited by novel sounds. J Psychophysiol 9:18鈥?1
    39. Horn JL (1965) A rationale and test for the number of factors in factor-analysis. Psychometrika 30:179鈥?85. doi:10.1007/Bf02289447 CrossRef
    40. Johnson R Jr (1986) A triarchic model of P300 amplitude. Psychophysiology 23:367鈥?84 CrossRef
    41. Katayama J, Polich J (1998) Stimulus context determines P3a and P3b. Psychophysiology 35:23鈥?3 CrossRef
    42. Kayser J, Tenke CE (2003) Optimizing PCA methodology for ERP component identification and measurement: theoretical rationale and empirical evaluation. Clin Neurophysiol 114:2307鈥?325 CrossRef
    43. Keitel C, Maess B, Schroger E, Muller MM (2012) Early visual and auditory processing rely on modality-specific attentional resources. Neuroimage. doi:10.1016/j.neuroimage.2012.12.046
    44. Kok A (1986) Effects of degradation of visual stimulation on components of the event-related potential (ERP) in go/nogo reaction tasks. Biol Psychol 23:21鈥?8 CrossRef
    45. Kok A (2001) On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 38:557鈥?77 CrossRef
    46. Kosslyn SM, Alpert NM, Thompson WL, Chabris CF, Rauch SL, Anderson AK (1994) Identifying objects seen from different viewpoints. A PET investigation. Brain 117(Pt 5):1055鈥?071 CrossRef
    47. Kroll JF, Potter MC (1984) Recognizing words, pictures, and concepts鈥攁 comparison of lexical, object, and reality decisions. J Verbal Learn Verbal Behav 23:39鈥?6. doi:10.1016/S0022-5371(84)90499-7 CrossRef
    48. Lavie N, Hirst A, de Fockert JW, Viding E (2004) Load theory of selective attention and cognitive control. J Exp Psychol Gen 133:339鈥?54. doi:10.1037/0096-3445.133.3.339 CrossRef
    49. Luck SJ (2005) An introduction to the event-related potential technique. MIT, Cambridge
    50. Lv JY, Wang T, Qiu J, Feng SH, Tu S, Wei DT (2010) The electrophysiological effect of working memory load on involuntary attention in an auditory-visual distraction paradigm: an ERP study. Exp Brain Res 205:81鈥?6. doi:10.1007/s00221-010-2360-x CrossRef
    51. Muller-Gass A, Schroger E (2007) Perceptual arid cognitive task difficulty has differential effects on auditory distraction. Brain Res 1136:169鈥?77. doi:10.1016/j.brainres.2006.12.020 CrossRef
    52. Naatanen R (1990) The role of attention in auditory information-processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201鈥?32 CrossRef
    53. Nittono H, Shibuya Y, Hori T (2007) Anterior N2 predicts subsequent viewing time and interest rating for novel drawings. Psychophysiology 44:687鈥?96. doi:10.1111/j.1469-8986.2007.00539.x CrossRef
    54. Pfefferbaum A, Ford JM, Weller BJ, Kopell BS (1985) ERPs to response production and inhibition. Electroencephalogr Clin Neurophysiol 60:423鈥?34 CrossRef
    55. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128鈥?148. doi:10.1016/j.clinph.2007.04.019 CrossRef
    56. Polich J, Comerchero MD (2003) P3a from visual stimuli: typicality, task, and topography. Brain Topogr 15:141鈥?52 CrossRef
    57. Postle BR (2005) Delay-period activity in the prefrontal cortex: one function is sensory gating. J Cogn Neurosci 17:1679鈥?690. doi:10.1162/089892905774589208 CrossRef
    58. Postle BR (2006) Working memory as an emergent property of the mind and brain. Neuroscience 139:23鈥?8. doi:10.1016/j.neuroscience.2005.06.005 CrossRef
    59. Prox V, Dietrich DE, Zhang Y, Emrich HM, Ohlmeier MD (2007) Attentional processing in adults with ADHD as reflected by event-related potentials. Neurosci Lett 419:236鈥?41. doi:10.1016/j.neulet.2007.04.011 CrossRef
    60. SanMiguel I, Corral MJ, Escera C (2008) When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm. J Cogn Neurosci 20:1131鈥?145. doi:10.1162/jocn.2008.20078 CrossRef
    61. Shigeto H, Ishiguro J, Nittono H (2011) Effects of visual stimulus complexity on event-related brain potentials and viewing duration in a free-viewing task. Neurosci Lett 497:85鈥?9. doi:10.1016/j.neulet.2011.04.035 CrossRef
    62. Simons RF, Graham FK, Miles MA, Chen X (2001) On the relationship of P3a and the Novelty-P3. Biol Psychol 56:207鈥?18 CrossRef
    63. Simson R, Vaughan HG Jr, Ritter W (1977) The scalp topography of potentials in auditory and visual Go/NoGo tasks. Electroencephalogr Clin Neurophysiol 43:864鈥?75 CrossRef
    64. Soltani M, Knight RT (2000) Neural origins of the P300. Crit Rev Neurobiol 14:199鈥?24 CrossRef
    65. Squires NK, Squires KC, Hillyard SA (1975) Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol 38:387鈥?01 CrossRef
    66. Stoppel CM, Boehler CN, Strumpf H, Heinze HJ, Hopf JM, Duzel E, Schoenfeld MA (2009) Neural correlates of exemplar novelty processing under different spatial attention conditions. Hum Brain Mapp 30:3759鈥?771. doi:10.1002/hbm.20804 CrossRef
    67. Talsma D, Senkowski D, Woldorff MG (2009) Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli. Exp Brain Res 198:313鈥?28. doi:10.1007/s00221-009-1858-6 CrossRef
    68. Tarbi EC, Sun X, Holcomb PJ, Daffner KR (2011) Surprise? Early visual novelty processing is not modulated by attention. Psychophysiology 48:624鈥?32. doi:10.1111/j.1469-8986.2010.01129.x CrossRef
    69. Van der Stigchel S (2010) The search for oculomotor inhibition: interactions with working memory. Exp Psychol 57:429鈥?35. doi:10.1027/1618-3169/a000053 CrossRef
    70. Verbaten MN, Huyben MA, Kemner C (1997) Processing capacity and the frontal P3. Int J Psychophysiol 25:237鈥?48 CrossRef
    71. Verleger R (2008) P3b: towards some decision about memory. Clin Neurophysiol 119:968鈥?70. doi:10.1016/j.clinph.2007.11.175 CrossRef
    72. Wang Y, Cui L, Wang H, Tian S, Zhang X (2004) The sequential processing of visual feature conjunction mismatches in the human brain. Psychophysiology 41:21鈥?9. doi:10.1111/j.1469-8986.2003.00134.x CrossRef
    73. Woods DL, Knight RT, Scabini D (1993) Anatomical substrates of auditory selective attention: behavioral and electrophysiological effects of posterior association cortex lesions. Brain Res Cogn Brain Res 1:227鈥?40 CrossRef
  • 作者单位:J. Schomaker (1)
    M. Meeter (1)

    1. Department of Cognitive Psychology, VU University, Van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands
  • ISSN:1432-1106
文摘
Novel stimuli are detected and evaluated quickly, suggesting that processing them is a priority for the brain. In the present study, the effects of attention on this early visual novelty processing were investigated in two experiments using the event-related potential (ERP) technique. In the first experiment, participants performed two tasks that varied in the amount of attention available for novel stimuli. In the Visual Oddball task, participants responded to an infrequent target presented among standard and novel stimuli. In the Working Memory task, participants saw the same stimuli, but they could ignore them. Instead, participants had to keep six letters in working memory and report one of these letters at the end of the trial; attention was thus maximally allocated away from the visual oddball stimuli. In line with attention being fully occupied in the Working Memory task, the P3a to the visual oddball stimuli was smaller in the Working Memory than in the Visual Oddball task. In contrast, the anterior N2 component to task-irrelevant stimuli was enhanced in the Working Memory task. These findings suggest that the initial detection of novel stimuli is enhanced (large anterior N2) when few attentional resources are available, which is inconsistent with earlier findings that if anything, the N2 is enhanced by attention. In a second experiment, a condition was added in which working memory load was low, but visual oddball stimuli were task-irrelevant. Results from this experiment showed that while the reduction in P3a amplitude was due to task irrelevance, the enhanced anterior N2 was linked to a high working memory load. This suggests that novelty detection is enhanced when attention is otherwise engaged.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700