Alterations in behavioral responses to dopamine agonists in olfactory bulbectomized mice: relationship to changes in the striatal dopaminergic system
详细信息    查看全文
  • 作者:Kohei Takahashi ; Osamu Nakagawasai ; Wataru Nemoto ; Takeharu Nakajima…
  • 关键词:Olfactory bulbectomy ; Climbing behavior ; Dopamine ; Tyrosine hydroxylase ; Depression
  • 刊名:Psychopharmacology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:233
  • 期:7
  • 页码:1311-1322
  • 全文大小:988 KB
  • 参考文献:Baik JH, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377:424–8CrossRef PubMed
    Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24:9541–52CrossRef PubMed
    Balsara JJ, Nandal NV, Mane VR, Chandorkar AG (1982) Experimental evaluation of the antidepressant and neuroleptic activity of maprotiline. Indian J Physiol Pharmacol 26:183–95PubMed
    Boger HA, Middaugh LD, Patrick KS, Ramamoorthy S, Denehy ED, Zhu H, Pacchioni AM, Granholm AC, McGinty JF (2007) Long-term consequences of methamphetamine exposure in young adults are exacerbated in glial cell line-derived neurotrophic factor heterozygous mice. J Neurosci 27:8816–25CrossRef PubMed PubMedCentral
    Breuer ME, Groenink L, Oosting RS, Buerger E, Korte M, Ferger B, Olivier B (2009a) Antidepressant effects of pramipexole, a dopamine D3/D2 receptor agonist, and 7-OH-DPAT, a dopamine D3 receptor agonist, in olfactory bulbectomized rats. Eur J Pharmacol 616:134–40CrossRef PubMed
    Breuer ME, van Gaalen MM, Wernet W, Claessens SE, Oosting RS, Behl B, Korte SM, Schoemaker H, Gross G, Olivier B, Groenink L (2009b) SSR149415, a non-peptide vasopressin V1b receptor antagonist, has long-lasting antidepressant effects in the olfactory bulbectomy-induced hyperactivity depression model. Naunyn Schmiedebergs Arch Pharmacol 379:101–6CrossRef PubMed
    Brennan JA, Graf R, Grauer SM, Navarra RL, Pulicicchio CM, Hughes ZA, Lin Q, Wantuch C, Rosenzweig-Lipson S, Pruthi F, Lai M, Smith D, Goutier W, van de Neut M, Robichaud AJ, Rotella D, Feenstra RW, Kruse C, Broqua P, Beyer CE, McCreary AC, Pausch MH, Marquis KL (2010) WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2(3H)-one]: a novel dopamine D2 receptor partial agonist/serotonin reuptake inhibitor with preclinical antipsychotic-like and antidepressant-like activity. J Pharmacol Exp Ther 332:190–201CrossRef PubMed
    Cain DP (1974) The role of the olfactory bulb in limbic mechanisms. Psychol Bull 81:654–71CrossRef PubMed
    Calcagnetti DJ, Quatrella LA, Schechter MD (1996) Olfactory bulbectomy disrupts the expression of cocaine-induced conditioned place preference. Physiol Behav 59:597–604CrossRef PubMed
    Centonze D, Picconi B, Baunez C, Borrelli E, Pisani A, Bernardi G, Calabresi P (2002) Cocaine and amphetamine depress striatal GABAergic synaptic transmission through D2 dopamine receptors. Neuropsychopharmacology 26:164–75CrossRef PubMed
    Chiodo LA, Antelman SM (1980a) Electroconvulsive shock: progressive dopamine autoreceptor subsensitivity independent of repeated treatment. Science 210:799–801CrossRef PubMed
    Chiodo LA, Antelman SM (1980b) Repeated tricyclics induce a progressive dopamine autoreceptor subsensitivity independent of daily drug treatment. Nature 287:451–4CrossRef PubMed
    Dziedzicka-Wasylewska M, Rogoz R, Klimek V, Maj J (1997) Repeated administration of antidepressant drugs affects the levels of mRNA coding for D1 and D2 dopamine receptors in the rat brain. J Neural Transm (Vienna) 104:515–24CrossRef
    Feltenstein MW, Altar CA, See RE (2007) Aripiprazole blocks reinstatement of cocaine seeking in an animal model of relapse. Biol Psychiatry 61:582–90CrossRef PubMed
    Fetsko LA, Xu R, Wang Y (2003) Alterations in D1/D2 synergism may account for enhanced stereotypy and reduced climbing in mice lacking dopamine D2L receptor. Brain Res 967:191–200CrossRef PubMed
    Friedman A, Dremencov E, Crown H, Levy D, Mintz M, Overstreet DH, Yadid G (2005) Variability of the mesolimbic neuronal activity in a rat model of depression. Neuroreport 16:513–6CrossRef PubMed
    Ghosh PK, Hrdina PD (1977) Effects of tricyclic antidepressants on the content and metabolism of dopamine in the rat striatum. Can J Physiol Pharmacol 55:383–8CrossRef PubMed
    Gottesfeld Z, Garcia CJ, Lingham RB, Chronister RB (1989) Prenatal ethanol exposure impairs lesion-induced plasticity in a dopaminergic synapse after maturity. Neuroscience 29:715–23CrossRef PubMed
    Greenaway M, Elbe D (2009) Focus on aripiprazole: a review of its use in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatr 18:250–60CrossRef
    Heimer L, Zahm DS, Alheid GF (1995) Basal ganglia. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, pp 579–628
    Hendriksen H, Korte SM, Olivier B, Oosting RS (2015) The olfactory bulbectomy model in mice and rat: one story or two tails? Eur J Pharmacol 753:105–13CrossRef PubMed
    Holmes PV, Masini CV, Primeaux SD, Garrett JL, Zellner A, Stogner KS, Duncan AA, Crystal JD (2002) Intravenous self-administration of amphetamine is increased in a rat model of depression. Synapse 46:4–10CrossRef PubMed
    Holmes PV (1999) Olfactory bulbectomy increases prepro-enkephalin mRNA levels in the ventral striatum in rats. Neuropeptides 33:206–11CrossRef PubMed
    Hozumi S, Nakagawasai O, Tan-No K, Niijima F, Yamadera F, Murata A, Arai Y, Yasuhara H, Tadano T (2003) Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav Brain Res 138:9–15CrossRef PubMed
    Jancsàr SM, Leonard BE (1984) Changes in neurotransmitter metabolism following olfactory bulbectomy in the rat. Prog Neuropsychopharmacol Biol Psychiatry 8:263–9CrossRef PubMed
    Jancsár SM, Leonard BE (1983) Behavioural and neurochemical interactions between chronic reserpine and chronic antidepressants. A possible model for the detection of atypical antidepressants. Biochem Pharmacol 32:1569–71CrossRef PubMed
    Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther 74:299–316CrossRef PubMed
    Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow JR, Fang Y, Gerhardt GA, Grandy DK, Low MJ (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 18:3470–9PubMed
    Larsson K (1971) Impaired mating performances in male rats after anosmia induced peripherally or centrally. Brain Behav Evol 4:463–71CrossRef PubMed
    Lumia AR, Teicher MH, Salchli F, Ayers E, Possidente B (1992) Olfactory bulbectomy as a model for agitated hyposerotonergic depression. Brain Res 587:181–5CrossRef PubMed
    Maj J, Dziedzicka-Wasylewska M, Rogoz R, Rogóz Z, Skuza G (1996) Antidepressant drugs given repeatedly change the binding of the dopamine D2 receptor agonist, [3H]N-0437, to dopamine D2 receptors in the rat brain. Eur J Pharmacol 304:49–54CrossRef PubMed
    Masini CV, Holmes PV, Freeman KG, Maki AC, Edwards GL (2004) Dopamine overflow is increased in olfactory bulbectomized rats: an in vivo microdialysis study. Physiol Behav 81:111–9CrossRef PubMed
    Mele A, Avena M, Roullet P, De Leonibus E, Mandillo S, Sargolini F, Coccurello R, Oliverio A (2004) Nucleus accumbens dopamine receptors in the consolidation of spatial memory. Behav Pharmacol 15:423–31CrossRef PubMed
    Mucignat-Caretta C, Bondí M, Caretta A (2006) Time course of alterations after olfactory bulbectomy in mice. Physiol Behav 89:637–43CrossRef PubMed
    Nakagawasai O, Yamadera F, Iwasaki K, Asao T, Tan-No K, Niijima F, Arai H, Tadano T (2007) Preventive effect of kami-untan-to on performance in the forced swimming test in thiamine-deficient mice: relationship to functions of catecholaminergic neurons. Behav Brain Res 177:315–21CrossRef PubMed
    Nakagawasai O, Hozumi S, Tan-No K, Niijima F, Arai Y, Yasuhara H, Tadano T (2003a) Immunohistochemical fluorescence intensity reduction of brain somatostatin in the impairment of learning and memory-related behaviour induced by olfactory bulbectomy. Behav Brain Res 142:63–7CrossRef PubMed
    Nakagawasai O, Tadano T, Arai Y, Hozumi S, Oba A, Tan-No K, Yasuhara H, Kisara K, Oreland L (2003b) Enhancement of 5-hydroxytryptamine-induced head-twitch response after olfactory bulbectomy. Neuroscience 117:1017–23CrossRef PubMed
    Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–9CrossRef PubMed
    Papp M, Klimek V, Willner P (1994) Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology (Berl) 115:441–6CrossRef
    Ploeger GE, Spruijt BM, Cools AR (1994) Spatial localization in the Morris water maze in rats: acquisition is affected by intra-accumbens injections of the dopaminergic antagonist haloperidol. Behav Neurosci 108:927–34CrossRef PubMed
    Protais P, Costentin J, Schwartz JC (1976) Climbing behavior induced by apomorphine in mice: a simple test for the study of dopamine receptors in striatum. Psychopharmacology (Berl) 50:1–6CrossRef
    Randrup A, Mogilnicka E (1976) Spectrum of pharmacological actions on brain dopamine. Indications for development of new psychoactive drugs. Discussion of amantadines as examples of new drugs with special actions on dopamine systems. Pol J Pharmacol Pharm 28:551–6PubMed
    Rosin DL, Melia K, Knorr AM, Nestler EJ, Roth RH, Duman RS (1995) Chronic imipramine administration alters the activity and phosphorylation state of tyrosine hydroxylase in dopaminergic regions of rat brain. Neuropsychopharmacology 12:113–21CrossRef PubMed
    Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–85CrossRef PubMed PubMedCentral
    Sarkisova KY, Kulikov MA, Midzyanovskaya IS, Folomkina AA (2008) Dopamine-dependent nature of depression-like behavior in WAG/Rij rats with genetic absence epilepsy. Neurosci Behav Physiol 38:119–28CrossRef PubMed
    Sato A, Nakagawasai O, Tan-No K, Onogi H, Niijima F, Tadano T (2010a) Effect of non-selective dopaminergic receptor agonist on disrupted maternal behavior in olfactory bulbectomized mice. Behav Brain Res 210:251–6CrossRef PubMed
    Sato A, Nakagawasai O, Tan-No K, Onogi H, Niijima F, Tadano T (2010b) Influence of olfactory bulbectomy on maternal behavior and dopaminergic function in nucleus accumbens in mice. Behav Brain Res 215:141–5CrossRef PubMed
    Segal DS (1976) Differential effects of para-chlorophenylalanine on amphetamine-induced locomotion and stereotypy. Brain Res 116:267–76CrossRef PubMed
    Setlow B, McGaugh JL (1998) Sulpiride infused into the nucleus accumbens posttraining impairs memory of spatial water maze training. Behav Neurosci 112:603–10CrossRef PubMed
    Sieck MH (1972) The role of the olfactory system in avoidance learning and activity. Physiol Behav 8:705–10CrossRef PubMed
    Song C, Leonard BE (1995) The effect of olfactory bulbectomy in the rat, alone or in combination with antidepressants and endogenous factors, on immune function. Hum Psychopharmacol 10:7–18CrossRef
    Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29:627–47CrossRef PubMed
    Sutoo D, Akiyama K, Yabe K (2001) Quantitative imaging of tyrosine hydroxylase and calmodulin in the human brain. J Neurosci Res 63:369–76CrossRef PubMed
    Todzy I, Coper H, Fernandes M (1978) Interaction between d-amphetamine and ethanol with respect to locomotion, stereotypies, ethanol sleeping time, and the kinetics of drug elimination. Psychopharmacology (Berl) 59:143–9CrossRef
    Willner P (1983) Dopamine and depression: a review of recent evidence. I Empirical studies Brain Res 287:211–24PubMed
    Xueliang F, Ming X, Ellen J (2010) Hess D2 dopamine receptor subtype-mediated hyperactivity and amphetamine responses in a model of ADHD. Neurobiol Dis 37:228–236CrossRef
    Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83:1197–209CrossRef PubMed
    Zhu JP, Xu W, Angulo JA (2005) Disparity in the temporal appearance of methamphetamine-induced apoptosis and depletion of dopamine terminal markers in the striatum of mice. Brain Res 1049:171–81CrossRef PubMed PubMedCentral
  • 作者单位:Kohei Takahashi (1)
    Osamu Nakagawasai (1)
    Wataru Nemoto (1)
    Takeharu Nakajima (1)
    Yuichiro Arai (2)
    Tadashi Hisamitsu (3)
    Koichi Tan-No (1)

    1. Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
    2. Department of Health Science, Ariake University of Medical and Health Science, 2-9-1 Ariake, Koto-Ku, Tokyo, 135-0063, Japan
    3. Department of Physiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Psychiatry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2072
文摘
Background Olfactory bulbectomy (OBX) in rodents is considered a putative animal model of depression. It has been reported that some abnormal behaviors observed in this animal model of depression involve dopaminergic neurons of the mesolimbic pathway. Therefore, we examined changes in the dopaminergic system in the caudate putamen (CPu), nucleus accumbens core (NAcC), and shell (NAcSh) of OBX mice and whether or not these alterations were reversed by chronic administration of imipramine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700