The Ontogeny of Encephalization: Tradeoffs Between Brain Growth, Somatic Growth, and Life History in Hominoids and Platyrrhines
详细信息    查看全文
  • 作者:Nancy L. Barrickman
  • 关键词:Encephalization ; Brain growth ; Somatic growth ; Life history ; Hominoid ; Platyrrhine
  • 刊名:Evolutionary Biology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:43
  • 期:1
  • 页码:81-95
  • 全文大小:944 KB
  • 参考文献:Aiello, L., Bates, N., & Joffe, T. (2001). In defence of the expensive tissue hypothesis. In D. Falk & K. R. Gibson (Eds.), Evolutionary anatomy of the primate cerebral cortex (pp. 57–78). Cambridge: Cambridge University Press.CrossRef
    Aiello, L., & Wheeler, P. (1995). The expensive-tissue hypothesis. Current Anthropology, 36(2), 199–221.CrossRef
    Barrickman, N. L. (2008). Evolutionary relationship between life history and brain growth in anthropoid primates. Ph.D. Dissertation, Duke University, Durham, North Carolina.
    Barrickman, N. L., Bastian, M. L., Isler, K., & van Schaik, C. P. (2008). Life history costs and benefits of encephalization: A comparative test using data from long-term studies of primates in the wild. Journal of Human Evolution, 54(5), 568–590.CrossRef PubMed
    Barrickman, N. L., & Lin, M. J. (2010). Encephalization, expensive tissue, and energetics: An examination of the relative costs of brain size in strepsirrhines. American Journal of Physical Anthropology, 143, 579–590.CrossRef PubMed
    Barton, R. A., & Capellini, I. (2011). Maternal investment, life histories, and the costs of brain growth in mammals. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 6169–6174.CrossRef PubMedCentral PubMed
    Bielby, J., Mace, G. M., Bininda-Emonds, O. R. P., Cardillo, M., Gittleman, J. L., Jones, K. E., et al. (2007). The fast-slow continuum in mammalian life history: An empirical reevaluation. American Naturalist, 169(6), 748–757.CrossRef PubMed
    Bogin, B. (2012). The evolution of human growth. In N. Cameron & B. Bogin (Eds.), Human growth and development (2nd ed., pp. 287–324). London: Elsevier.CrossRef
    Bosson, C. O., Islam, Z., & Boonstra, R. (2012). The impact of live trapping and trap model on the stress profiles of North American red squirrels. Journal of Zoology, 288, 159–169.CrossRef
    Byrne, R. W. (1997). The technical intelligence hypothesis: An additional evolutionary stimulus to intelligence. In A. Whiten & R. Byrne (Eds.), Machiavellian intelligence II (pp. 289–311). Cambridge: Cambridge University Press.CrossRef
    Cabana, T., Jolicoeur, P., & Baron, G. (1990). Brain and body growth and allometry in the Mongolian gerbil (Meriones unguiculatus). Growth, Development, and Aging, 54, 23–30.PubMed
    Charnov, E., & Berrigan, D. (1993). Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evolutionary Anthropology, 1, 191–194.CrossRef
    Chugani, H. T., & Phelps, M. E. (1986). Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science, 231(4740), 840–843.CrossRef PubMed
    Chugani, H. T., Phelps, M. E., & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22(4), 487–497.CrossRef PubMed
    Count, E. (1947). Brain and body weight in man: Their antecedents in growth and evolution. Annals of the New York Academy of Science, 46, 993–1122.CrossRef
    Deacon, T. (1990). Problems of ontogeny and phylogeny in brain size evolution. International Journal of Primatology, 11, 237–282.CrossRef
    Deaner, R., Barton, R., & van Schaik, C. P. (2003). Primate brains and life histories: Renewing the connection. In P. Kappeler & M. Pereira (Eds.), Primate life histories and socioecology (pp. 233–265). Chicago: University of Chicago Press.
    DeSilva, J. M., & Lesnick, J. J. (2008). Brain size at birth throughout human evolution: A new method for estimating neonatal brain size in hominins. Journal of Human Evolution, 55(6), 1064–1074.CrossRef PubMed
    Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6(5), 178–190.CrossRef
    Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125(1), 1–15.CrossRef
    Fish, J. L., & Lockwood, C. A. (2003). Dietary constraints on encephalization in primates. American Journal of Physical Anthropology, 120(2), 171–181.CrossRef PubMed
    Garland, T., & Ives, A. (2000). Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist, 155, 346–364.CrossRef
    Garland, T., Midford, P., & Ives, A. (1999). An introduction to phylogenetically-based statistical methods, with a new method for confidence intervals on ancestral states. American Zoologist, 39, 374–388.CrossRef
    Gibson, K. (1986). Cognition, brain size and the extraction of embedded food resources. In J. Else & P. Lee (Eds.), Primate ontogeny, cognition, and social behavior (pp. 93–103). New York: Cambridge University Press.
    Glander, K. E. (2013). Darting, anesthesia, and handling. In E. J. Sterling, N. Bynum, & M. E. Blair (Eds.), Primate ecology and conservation: A handbook of techniques (pp. 27–39). Oxford: Oxford University Press.CrossRef
    Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews of the Cambridge Philosophical Society, 41, 587–640.CrossRef PubMed
    Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge: Belknap Press of Harvard University Press.
    Harvey, P., Martin, R. D., & Clutton-Brock, T. (1987). Life histories in comparative perspective. In B. Smuts, D. Cheney, R. Seyfarth, R. Wrangham, & T. Struhsaker (Eds.), Primate societies (pp. 181–196). Chicago: University of Chicago Press.
    Harvey, P., & Pagel, M. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.
    Herndon, J. G., Tigges, J., Anderson, D. C., Klumpp, S. A., & McClure, H. M. (1999). Brain weight throughout the lifespan of the chimpanzee. Journal of Comparative Neurology, 409, 567–579.CrossRef PubMed
    Herre, W. (1959). Domestikation und Stammesgeschichte. In G. Herberer (Ed.), Die Evolution der Organismen (pp. 801–856). Stuttgart: Gustav Fischer.
    Holliday, M. (1986). Body composition and energy needs during growth. In F. Falkner & J. Tanner (Eds.), Human growth: A comprehensive treatise (pp. 101–117). New York: Plenum Press.
    Holt, A., Cheek, D., Mellits, E., & Hill, D. (1975). Brain size and the relation of the primate to the nonprimate. In D. Cheek (Ed.), Fetal and postnatal cellular growth: Hormones and nutrition (pp. 23–44). New York: John Wiley.
    Isler, K., Christopher Kirk, E., Miller, J. M. A., Albrecht, G. A., Gelvin, B. R., & Martin, R. D. (2008). Endocranial volumes of primate species: Scaling analyses using a comprehensive and reliable data set. Journal of Human Evolution, 55(6), 967–978.CrossRef PubMed
    Isler, K., & van Schaik, C. (2006). Costs of encephalization: The energy trade-off hypothesis tested on birds. Journal of Human Evolution, 51, 228–243.CrossRef PubMed
    Isler, K., & van Schaik, C. P. (2009). The expensive brain: A framework for explaining evolutionary changes in brain size. Journal of Human Evolution, 57(4), 392–400.CrossRef PubMed
    Isler, K., & van Schaik, C. P. (2014). How humans evolved large brains: Comparative evidence. Evolutionary Anthropology, 23(2), 65–75.CrossRef PubMed
    Jerison, H. (1973). Evolution of the brain and intelligence. New York: Academic Press.
    Joffe, T. H. (1997). Social pressures have selected for an extended juvenile period in primates. Journal of Human Evolution, 32(6), 593–605.CrossRef PubMed
    Jolicoeur, P., & Pirlot, P. (1988). Asymptomatic growth and complex allometry of the brain and body in the white rat. Growth, Development, and Aging, 52, 3–10.PubMed
    Jungers, W. L., Falsetti, A. B., & Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. Yearbook of Physical Anthropology, 38, 137–161.CrossRef
    Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156–185.CrossRef
    Kennedy, C., & Sokoloff, L. (1957). An adaptation of the nitrous oxide method to the study of the cerebral circulation in children; normal values for cerebral blood flow and cerebral metabolic rate in childhood. The Journal of Clinical Investigation, 36(7), 1130–1137.CrossRef PubMedCentral PubMed
    Kuzawa, C. W., Chugani, H. T., Grossman, L. I., Lipovich, L., Muzik, O., Hof, P. R., et al. (2014). Metabolic costs and evolutionary implications of human brain development. Proceedings of the National Academy of Sciences of the United States of America, 111(36), 13010–13015.CrossRef PubMedCentral PubMed
    Lee, P. C. (1996). The meanings of weaning: Growth, lactation, and life history. Evolutionary Anthropology, 5(3), 87–96.CrossRef
    Lee, P. (1999). Comparative ecology of postnatal growth and weaning among haplorrhine primates. In P. Lee (Ed.), Comparative primate socioecology (pp. 111–139). Cambridge: Cambridge University Press.CrossRef
    Leigh, S. R. (1994). Relations between captive and noncaptive weights in anthropoid primates. Zoo Biology, 13, 21–43.CrossRef
    Leigh, S. (2001). Evolution of human growth. Evolutionary Anthropology, 10, 223–236.CrossRef
    Leigh, S. (2004). Brain growth, life history and cognition in primate and human evolution. American Journal of Primatology, 62, 139–164.CrossRef PubMed
    Leonard, W., & Robertson, M. (1994). Evolutionary perspectives on human nutrition: The influence of brain and body size on diet and metabolism. American Journal of Human Biology, 6, 77–88.CrossRef
    Leonard, W. R., Snodgrass, J. J., & Robertson, M. L. (2012). Comparative and evolutionary perspectives on human brain growth. In N. Cameron & B. Bogin (Eds.), Human growth and development (2nd ed., pp. 397–413). London: Elsevier.CrossRef
    Leutenegger, V. W. (1970). Beziehungen zwishcen der neugeborenengrosse und dem sexualdimorphismus am becken bei simischen primaten. Folia Primatologia, 12, 224–235.CrossRef
    Martin, R. D. (1981). Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature, 293, 57–60.CrossRef PubMed
    Martin, R. D. (1983). Human brain evolution in an ecological context. In 52nd James Arthur lecture on the evolution of the human brain. American Museum of Natural History, New York.
    Martin, R. D. (1990). Primate origins and evolution: A phylogenetic reconstruction. Princeton: Princeton University Press.
    Martin, R. D. (1996). Scaling of the mammalian brain: The maternal energy hypothesis. News in Physiological Sciences, 11, 149–156.
    Martin, R. D., Genoud, M., & Hemelrijk, C. (2005). Problems of allometric scaling analysis: Examples from mammalian reproductive biology. Journal of Experimental Biology, 208, 1731–1747.CrossRef PubMed
    Martin, R. D., & Harvey, P. H. (1985). Brain size allometry: Ontogeny and phylogeny. In W. Jungers (Ed.), Size and scaling in primate biology (pp. 147–173). New York: Plenum Press.CrossRef
    McFarlin, S. C., Barks, S. K., Tocheri, M. W., Massey, J. S., Eriksen, A. B., Fawcett, K. W., et al. (2013). Early brain growth cessation in wild Virunga mountain gorillas (Gorilla beringei beringei). American Journal of Primatologist, 75(5), 450–463.CrossRef
    Mink, J. W., Blumenschine, R. J., & Adams, D. B. (1981). Ratio of central nervous system to body metabolism in vertebrates: Its constancy and functional basis. The American Journal of Physiology, 241(3), R203–R212.PubMed
    Nunn, C. L., & Barton, R. A. (2001). Comparative methods for studying primate adaptation and allometry. Evolutionary Anthropology, 10(3), 81–98.CrossRef
    Pagel, M. D., & Harvey, P. H. (1993). Evolution of the juvenile period in mammals. In M. E. Pereira & L. A. Fairbanks (Eds.), Juvenile primates: Life history, development, and behavior (pp. 28–37). New York: Oxford University Press.
    Pelletier, F., Hogg, J. T., & Festa-Bianchet, M. (2004). Effect of chemical immobilization on social status of bighorn rams. Animal Behaviour, 67, 1163–1165.CrossRef
    Pereira, M. E., & Leigh, S. R. (2003). Modes of primate development. In P. M. Kappeler & M. E. Pereira (Eds.), Primate life histories and socioecology (pp. 149–176). Chicago: University of Chicago Press.
    Purvis, A., & Webster, A. (1999). Phylogenetically independent comparisons and primate phylogeny. In P. Lee (Ed.), Comparative primate socioecology (pp. 44–70). Cambridge: Cambridge University Press.CrossRef
    Pütter, A. (1920). Studien über physiologische Ähnlichkeit. IV. Wachstumsähnlichkeiten. Pfluegers Archiv für die gesamte Physiologie, 180, 298–340.CrossRef
    Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), 1017–1027.CrossRef
    Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4436–4441.CrossRef PubMedCentral PubMed
    Rice, S. H. (2002). The role of heterochrony in primate brain evolution. In N. Minugh-Purvis & K. J. McNamara (Eds.), Human evolution through developmental change (pp. 154–170). Baltimore: Johns Hopkins University Press.
    Ross, C., & Jones, K. (1999). Socioecology and the evolution of primate reproductive rates. In P. Lee (Ed.), Comparative primate socioecology (pp. 73–110). Cambridge: Cambridge University Press.CrossRef
    Sacher, G., & Staffeldt, E. (1974). Relation of gestation time to brain weight for placental mammals: Implications for the theory of vertebrate growth. American Naturalist, 108, 593–615.CrossRef
    Schultz, A. H. (1941). The relative size of cranial capacity in primates. American Journal of Physical Anthropology, 28, 273–287.CrossRef
    Schultz, A. H. (1965). The cranial capacity and orbital volume of hominoids according to age and sex. In A. Caso, E. H. Dávalos, S. Genovés, M. Léon-Portilla, & D. Sodi (Eds.), Homenaje a Juan Comas en su 65 aniversairo (pp. 337–357). Mexico City: Editorial Libros de Mexico.
    Shultz, S., & Dunbar, R. I. M. (2007). The evolution of the social brain: Anthropoid primates contrast with other vertebrates. Proceedings of the Royal Society B: Biological Sciences, 274(1624), 2429–2436.CrossRef PubMedCentral PubMed
    Smith, R. J., & Jungers, W. L. (1997). Body mass in comparative primatology. Journal of Human Evolution, 32, 523–559.CrossRef PubMed
    van Schaik, C., Barrickman, N., Bastian, M., Krakauer, E., & van Noordwijk, M. (2006). Primate life histories and the role of brains. In K. Hawkes & R. Paine (Eds.), The evolution of human life history (pp. 127–154). Santa Fe: SAR Press.
    van Schaik, C. P., & Burkart, J. M. (2011). Social learning and evolution: The cultural intelligence hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), 1008–1016.CrossRef
    van Schaik, C. P., Isler, K., & Burkart, J. M. (2012). Explaining brain size variation: From social to cultural brain. Trends in Cognitive Sciences, 16(5), 277–284.CrossRef PubMed
    Vinicius, L. (2005). Human encephalization and developmental timing. Journal of Human Evolution, 49, 762–776.CrossRef PubMed
    Vrba, E. (1998). Multiphasic growth models and the evolution of prolonged growth exemplified by human brain evolution. Journal of Theoretical Biology, 190, 227–239.CrossRef PubMed
  • 作者单位:Nancy L. Barrickman (1)

    1. Department of Biology, Salt Lake Community College, 248B Jordan Health Sciences, Salt Lake City, UT, 84088, USA
  • 刊物主题:Evolutionary Biology; Ecology; Developmental Biology; Human Genetics; Animal Genetics and Genomics;
  • 出版者:Springer US
  • ISSN:1934-2845
文摘
This study examines variation in brain growth relative somatic growth in four hominoids and three platyrrhines to determine whether there is a trade-off during ontogeny. I predicted that somatic growth would be reduced during periods of extensive brain growth, and species with larger degrees of encephalization would reach a smaller body size at brain growth completion because more energy is directed towards the brain. I measured cranial capacity and skeletal size in over 500 skeletal specimens from wild populations. I calculated nonlinear growth curves and velocity curves to determine brain/body growth allometry during ontogeny. In addition, I calculated linear regressions to describe the brain/body allometry during the postnatal period prior to brain size reaching an asymptote. The results showed that somatic growth is not substantially reduced in species with extensive brain growth, and body size at brain growth completion was larger in species with greater degrees of encephalization. Furthermore, large body size at brain growth completion was not correlated with interbirth interval, but was significantly correlated with prolonged juvenile periods and late age at maturity when data were corrected for phylogeny. These results indicate that neither reduction in body growth nor reproductive rate are compensatory mechanisms for the energetic costs of brain growth. Other avenues for meeting energetic costs must be in effect. In addition, the results show that somatic growth in encephalized species is particularly slow during the juvenile period after brain growth at or near completion, suggesting that these growth patterns are explained by reasons other than energetic costs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700