Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching
详细信息    查看全文
  • 作者:Martin Philpott (1) (2) (5)
    Catherine M Rogers (1) (2)
    Clarence Yapp (1) (2)
    Chris Wells (1) (6)
    Jean-Philippe Lambert (3)
    Claire Strain-Damerell (1)
    Nicola A Burgess-Brown (1)
    Anne-Claude Gingras (3) (4)
    Stefan Knapp (1) (2)
    Susanne M眉ller (1) (2)

    1. Structural Genomics Consortium
    ; Nuffield Department of Clinical Medicine ; University of Oxford ; Old Road Campus Research Building ; Roosevelt Drive ; Oxford ; OX3 7DQ ; UK
    2. Target Discovery Institute
    ; Nuffield Department of Clinical Medicine ; University of Oxford ; Roosevelt Drive ; Oxford ; OX3 7FZ ; UK
    5. Botnar Research Centre
    ; Nuffield Department of Orthopaedics ; Rheumatology and Musculoskeletal Sciences ; University of Oxford ; Windmill Road ; Oxford ; OX3 7LD ; UK
    6. Nanotether Discovery Sciences Ltd
    ; Museum Avenue ; Cardiff University ; Cardiff ; CF10 3AX ; UK
    3. Lunenfeld-Tanenbaum Research Institute
    ; Mount Sinai Hospital ; 600 University Avenue ; Toronto ; ON ; M5G 1X5 ; Canada
    4. Department of Molecular Genetics
    ; University of Toronto ; Toronto ; ON ; M5S 1A8 ; Canada
  • 关键词:Bromodomain ; Cell ; based assay ; Confocal microscopy ; Epigenetics ; Fluorescence recovery after photobleaching ; Histone acetylation ; Small ; molecule inhibitor
  • 刊名:Epigenetics & Chromatin
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:1,307 KB
  • 参考文献:1. Filippakopoulos, P, Picaud, S, Mangos, M, Keates, T, Lambert, JP, Barsyte-Lovejoy, D, Felletar, I, Volkmer, R, M眉ller, S, Pawson, T, Gingras, AC, Arrowsmith, CH, Knapp, S (2012) Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149: pp. 214-231 CrossRef
    2. Gallenkamp, D, Gelato, KA, Haendler, B, Weinmann, H (2014) Bromodomains and their pharmacological inhibitors. ChemMedChem 9: pp. 438-464 CrossRef
    3. Muller, S, Filippakopoulos, P, Knapp, S (2011) Bromodomains as therapeutic targets. Expert Rev Mol Med 13: pp. e29 CrossRef
    4. Comuzzi, B, Nemes, C, Schmidt, S, Jasarevic, Z, Lodde, M, Pycha, A, Bartsch, G, Offner, F, Culig, Z, Hobisch, A (2004) The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. J Pathol 204: pp. 159-166 CrossRef
    5. Heemers, HV, Sebo, TJ, Debes, JD, Regan, KM, Raclaw, KA, Murphy, LM, Hobisch, A, Culig, Z, Tindall, DJ (2007) Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res 67: pp. 3422-3430 CrossRef
    6. Chen, L, Wei, T, Si, X, Wang, Q, Li, Y, Leng, Y, Deng, A, Chen, J, Wang, G, Zhu, S, Kang, J (2013) Lysine acetyltransferase GCN5 potentiates the growth of non-small cell lung cancer via promotion of E2F1, cyclin D1, and cyclin E1 expression. J Biol Chem 288: pp. 14510-14521 CrossRef
    7. French, CA, Ramirez, CL, Kolmakova, J, Hickman, TT, Cameron, MJ, Thyne, ME, Kutok, JL, Toretsky, JA, Tadavarthy, AK, Kees, UR, Fletcher, JA, Aster, JC (2008) BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene 27: pp. 2237-2242 CrossRef
    8. Panagopoulos, I, Fioretos, T, Isaksson, M, Samuelsson, U, Billstr枚m, R, Str枚mbeck, B, Mitelman, F, Johansson, B (2001) Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10: pp. 395-404 CrossRef
    9. Constellation Pharmaceuticals; Leukemia and Lymphoma Society: A Phase 1 Study Evaluating CPI-0610 in Patients With Progressive Lymphoma. ClinicalTrials.gov Identifier: NCT01949883 [http://clinicaltrials.gov/ct2/show/NCT01949883] (last updated 27 March 2014)
    10. GlaxoSmithKline: A Study to Investigate the Safety, Pharmacokinetics, Pharmacodynamics, and Clinical Activity of GSK525762 in Subjects With NUT Midline Carcinoma (NMC) and Other Cancers. ClinicalTrials.gov Identifier: NCT01587703 [http://www.clinicaltrials.gov/ct2/show/NCT01587703] (last updated 22 May 2014)
    11. GlaxoSmithKline: A Dose Escalation Study to Investigate the Safety, Pharmacokinetics (PK), Pharmacodynamics (PD) and Clinical Activity of GSK525762 in Subjects With Relapsed, Refractory Hematologic Malignancies. ClinicalTrials.gov Identifier: NCT01943851 [http://clinicaltrials.gov/ct2/show/NCT01943851] (last updated 22 May 2014)
    12. OncoEthix: A Phase I, Dose-finding Study of the Bromodomain (Brd) Inhibitor OTX015 in Haematological Malignancies. ClinicalTrials.gov Identifier: NCT01713582 [http://clinicaltrials.gov/ct2/show/NCT01713582] (last updated 29 March 2014)
    13. Tensha Therapeutics: A Two Part, Multicenter, Open-label Study of TEN-010 Given Subcutaneously. ClinicalTrials.gov Identifier: NCT01987362 [http://clinicaltrials.gov/ct2/show/NCT01987362] (last updated 17 December 2013)
    14. Philpott, M, Yang, J, Tumber, T, Fedorov, O, Uttarkar, S, Filippakopoulos, P, Picaud, S, Keates, T, Felletar, I, Ciulli, A, Knapp, S, Heightman, TD (2011) Bromodomain-peptide displacement assays for interactome mapping and inhibitor discovery. Mol Biosyst 7: pp. 2899-2908 CrossRef
    15. Day, CA, Kraft, LJ, Kang, M, Kenworthy, AK (2012) Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP). Curr Protoc Cytom 62: pp. 2.19.1-2.19.29
    16. Sprague, BL, McNally, JG (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15: pp. 84-91 CrossRef
    17. Filippakopoulos, P, Qi, J, Picaud, S, Shen, Y, Smith, WB, Fedorov, O, Morse, EM, Keates, T, Hickman, TT, Felletar, I, Philpott, M, Munro, S, McKeown, MR, Wang, Y, Christie, AL, West, N, Cameron, MJ, Schwartz, B, Heightman, TD, La Thangue, N, French, CA, Wiest, O, Kung, AL, Knapp, S, Bradner, JE (2010) Selective inhibition of BET bromodomains. Nature 468: pp. 1067-1073 CrossRef
    18. Picaud, S, Da Costa, D, Thanasopoulou, A, Filippakopoulos, P, Fish, PV, Philpott, M, Fedorov, O, Brennan, P, Bunnage, ME, Owen, DR, Bradner, JE, Taniere, P, O鈥橲ullivan, B, M眉ller, S, Schwaller, J, Stankovic, T, Knapp, S (2013) PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Cancer Res 73: pp. 3336-3346 CrossRef
    19. Dey, A, Nishiyama, A, Karpova, T, McNally, J, Ozato, K (2009) Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol Biol Cell 20: pp. 4899-4909 CrossRef
    20. Jang, MK, Mochizuki, K, Zhou, M, Jeong, HS, Brady, JN, Ozato, K (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19: pp. 523-534 CrossRef
    21. Dey, A, Ellenberg, J, Farina, A, Coleman, AE, Maruyama, T, Sciortino, S, Lippincott-Schwartz, J, Ozato, K (2000) A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G2-to-M transition. Mol Cell Biol 20: pp. 6537-6549 CrossRef
    22. Gamsjaeger, R, Webb, SR, Lamonica, JM, Billin, A, Blobel, GA, Mackay, JP (2011) Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3. Mol Cell Biol 31: pp. 2632-2640 CrossRef
    23. Lamonica, JM, Deng, W, Kadauke, S, Campbell, AE, Gamsjaeger, R, Wang, H, Cheng, Y, Billin, AN, Hardison, RC, Mackay, JP, Blobel, GA (2011) Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc Natl Acad Sci U S A 108: pp. E159-E168 CrossRef
    24. Fish, PV, Filippakopoulos, P, Bish, G, Brennan, PE, Bunnage, ME, Cook, AS, Federov, O, Gerstenberger, BS, Jones, H, Knapp, S, Marsden, B, Nocka, K, Owen, DR, Philpott, M, Picaud, S, Primiano, MJ, Ralph, MJ, Sciammetta, N, Trzupek, JD (2012) Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J Med Chem 55: pp. 9831-9837 CrossRef
    25. Cammas, F, Khetchoumian, K, Chambon, P, Losson, R (2012) TRIM involvement in transcriptional regulation. Adv Exp Med Biol 770: pp. 59-76 CrossRef
    26. Tsai, WW, Wang, Z, Yiu, TT, Akdemir, KC, Xia, W, Winter, S, Tsai, CY, Shi, X, Schwarzer, D, Plunkett, W, Aronow, B, Gozani, O, Fischle, W, Hung, MC, Patel, DJ, Barton, MC (2010) TRIM24 links a non-canonical histone signature to breast cancer. Nature 468: pp. 927-932 CrossRef
    27. Flaus, A, Martin, DMA, Barton, GJ, Owen-Hughes, T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34: pp. 2887-2905 CrossRef
    28. Uhl茅n, M, Bj枚rling, E, Agaton, C, Szigyarto, CA, Amini, B, Andersen, E, Andersson, AC, Angelidou, P, Asplund, A, Asplund, C, Berglund, L, Bergstr枚m, K, Brumer, H, Cerjan, D, Ekstr枚m, M, Elobeid, A, Eriksson, C, Fagerberg, L, Falk, R, Fall, J, Forsberg, M, Bj枚rklund, MG, Gumbel, K, Halimi, A, Hallin, I, Hamsten, C, Hansson, M, Hedhammar, M, Hercules, G, Kampf, C (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4: pp. 1920-1932 CrossRef
    29. Structural Genomics Consortium (SGC): PFI-3: selective chemical probe for SMARCA bromodomains. [http://www.thesgc.org/chemical-probes/PFI-3] (accessed 28 June 2014)
    30. Zhou, Y, Grummt, I (2005) The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 15: pp. 1434-1438 CrossRef
    31. Burrows, AE, Smogorzewska, A, Elledge, SJ (2010) Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci U S A 107: pp. 14280-14285 CrossRef
    32. Mantovani, F, Drost, J, Voorhoeve, PM, Del Sal, G, Agami, R (2010) Gene regulation and tumor suppression by the bromodomain-containing protein BRD7. Cell Cycle 9: pp. 2777-2781 CrossRef
    33. Boussouar, F, Jamshidikia, M, Morozumi, Y, Rousseaux, S, Khochbin, S (1829) Malignant genome reprogramming by ATAD2. Biochim Biophys Acta 2013: pp. 1010-1014
    34. Kikuchi, H, Takami, Y, Nakayama, T (2005) GCN5: a supervisor in all-inclusive control of vertebrate cell cycle progression through transcription regulation of various cell cycle-related genes. Gene 347: pp. 83-97 CrossRef
    35. Velasco, G, Grkovic, S, Ansieau, S (2006) New insights into BS69 functions. J Biol Chem 281: pp. 16546-16550 CrossRef
    36. Wen, H, Li, Y, Xi, Y, Jiang, S, Stratton, S, Peng, D, Tanaka, K, Ren, Y, Xia, Z, Wu, J, Li, B, Barton, MC, Li, W, Li, H, Shi, X (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508: pp. 263-268 CrossRef
    37. Structural Genomics Consortium (SGC): GSK2801: a selective chemical probe for BAZ2B/A bromodomains. [http://www.thesgc.org/chemical-probes/GSK2801] (accessed 28 June 2014)
    38. Structural Genomics Consortium (SGC): Bromosporine. [http://www.thesgc.org/chemical-probes/bromosporine] (accessed 28 June 2014)
    39. Mishima, Y, Miyagi, S, Saraya, A, Negishi, M, Endoh, M, Endo, TA, Toyoda, T, Shinga, J, Katsumoto, T, Chiba, T, Yamaguchi, N, Kitabayashi, I, Koseki, H, Iwama, A (2011) The Hbo1-Brd1/Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver erythropoiesis. Blood 118: pp. 2443-2453 CrossRef
    40. Uhlen, M, Oksvold, P, Fagerberg, L, Lundberg, E, Jonasson, K, Forsberg, M, Zwahlen, M, Kampf, C, Wester, K, Hober, S, Wernerus, H, Bj枚rling, L, Ponten, F (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28: pp. 1248-1250 CrossRef
    41. McLure, KG, Gesner, EM, Tsujikawa, L, Kharenko, OA, Attwell, S, Campeau, E, Wasiak, S, Stein, A, White, A, Fontano, E, Suto, RK, Wong, NC, Wagner, GS, Hansen, HC, Young, PR (2013) RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One 8: pp. e83190 CrossRef
    42. Picaud, S, Wells, C, Felletar, I, Brotherton, D, Martin, S, Savitsky, P, Diez-Dacal, B, Philpott, M, Bountra, C, Lingard, H, Fedorov, O, M眉ller, S, Brennan, PE, Knapp, S, Filippakopoulos, P (2013) RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci U S A 110: pp. 19754-19759 CrossRef
    43. Janknecht, R (2002) The versatile functions of the transcriptional coactivators p300 and CBP and their roles in disease. Histol Histopathol 17: pp. 657-668
    44. Holmqvist, PH, Mannervik, M (2013) Genomic occupancy of the transcriptional co-activators p300 and CBP. Transcription 4: pp. 18-23 CrossRef
    45. De Guzman, RN, Wojciak, JM, Martinez-Yamout, MA, Dyson, HJ, Wright, PE (2005) CBP/p300 TAZ1 domain forms a structured scaffold for ligand binding. Biochemistry 44: pp. 490-497 CrossRef
    46. Legge, GB, Martinez-Yamout, MA, Hambly, DM, Trinh, T, Lee, BM, Dyson, HJ, Wright, PE (2004) ZZ domain of CBP: an unusual zinc finger fold in a protein interaction module. J Mol Biol 343: pp. 1081-1093 CrossRef
    47. Lin, CH, Hare, BJ, Wagner, G, Harrison, SC, Maniatis, T, Fraenkel, E (2001) A small domain of CBP/p300 binds diverse proteins: solution structure and functional studies. Mol Cell 8: pp. 581-590 CrossRef
    48. Radhakrishnan, I, P茅rez-Alvarado, GC, Parker, D, Dyson, HJ, Montminy, MR, Wright, PE (1999) Structural analyses of CREB-CBP transcriptional activator-coactivator complexes by NMR spectroscopy: implications for mapping the boundaries of structural domains. J Mol Biol 287: pp. 859-865 CrossRef
    49. Liu, X, Wang, L, Zhao, K, Thompson, PR, Hwang, Y, Marmorstein, R, Cole, PA (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451: pp. 846-850 CrossRef
    50. Structural Genomics Consortium (SGC): I-CBP112 鈥?a CREBBP/EP300-selective chemical probe. [http://www.thesgc.org/chemical-probes/ICBP112] (accessed 28 June 2014)
    51. Thompson, KA, Wang, B, Argraves, WS, Giancotti, FG, Schranck, DP, Ruoslahti, E (1994) BR140, a novel zinc-finger protein with homology to the TAF250 subunit of TFIID. Biochem Biophys Res Commun 198: pp. 1143-1152 CrossRef
    52. Dowdle, JA, Mehta, M, Kass, EM, Vuong, BQ, Inagaki, A, Egli, D, Jasin, M, Keeney, S (2013) Mouse BAZ1A (ACF1) is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis. PLoS Genet 9: pp. e1003945 CrossRef
    53. Nagase, T, Yamakawa, H, Tadokoro, S, Nakajima, D, Inoue, S, Yamaguchi, K, Itokawa, Y, Kikuno, RF, Koga, H, Ohara, O (2008) Exploration of human ORFeome: high-throughput preparation of ORF clones and efficient characterization of their protein products. DNA Res 15: pp. 137-149 CrossRef
    54. Rual, JF, Hirozane-Kishikawa, T, Hao, T, Bertin, N, Li, S, Dricot, A, Li, N, Rosenberg, J, Lamesch, P, Vidalain, PO, Clingingsmith, TR, Hartley, JL, Esposito, D, Cheo, D, Moore, T, Simmons, B, Sequerra, R, Bosak, S, Doucette-Stamm, L, Le Peuch, C, Vandenhaute, J, Cusick, ME, Albala, JS, Hill, DE, Vidal, M (2004) Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res 14: pp. 2128-2135 CrossRef
    55. Skarra, DV, Goudreault, M, Choi, H, Mullin, M, Nesvizhskii, AI, Gingras, AC, Honkanen, RE (2011) Label-free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5. Proteomics 11: pp. 1508-1516 CrossRef
    56. Barik, S (1993) Site-directed mutagenesis by double polymerase chain reaction. Methods Mol Biol 15: pp. 277-286
    57. Sasaki, Y, Sone, T, Yoshida, S, Yahata, K, Hotta, J, Chesnut, JD, Honda, T, Imamoto, F (2004) Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the Multisite Gateway system. J Biotechnol 107: pp. 233-243 CrossRef
    58. Phair, RD, Gorski, SA, Misteli, T (2004) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods Enzymol 375: pp. 393-414 CrossRef
    59. Ellison, SLR, Barwick, VJ, Duguid Farrant, TJ (2009) Practical Statistics for the Analytical Scientist: A Bench Guide. Royal Society of Chemistry, Cambridge, UK
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Cell Biology;
  • 出版者:BioMed Central
  • ISSN:1756-8935
文摘
Background Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown functions of bromodomain-containing proteins present challenges to systematically demonstrating cellular efficacy and selectivity for these inhibitors. Here we assess the viability of fluorescence recovery after photobleaching (FRAP) assays as a target agnostic method for the direct visualisation of an on-target effect of bromodomain inhibitors in living cells. Results Mutation of a conserved asparagine crucial for binding to acetylated lysines in the bromodomains of BRD3, BRD4 and TRIM24 all resulted in reduction of FRAP recovery times, indicating loss of or significantly reduced binding to acetylated chromatin, as did the addition of known inhibitors. Significant differences between wild type and bromodomain mutants for ATAD2, BAZ2A, BRD1, BRD7, GCN5L2, SMARCA2 and ZMYND11 required the addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) to amplify the binding contribution of the bromodomain. Under these conditions, known inhibitors decreased FRAP recovery times back to mutant control levels. Mutation of the bromodomain did not alter FRAP recovery times for full-length CREBBP, even in the presence of SAHA, indicating that other domains are primarily responsible for anchoring CREBBP to chromatin. However, FRAP assays with multimerised CREBBP bromodomains resulted in a good assay to assess the efficacy of bromodomain inhibitors to this target. The bromodomain and extraterminal protein inhibitor PFI-1 was inactive against other bromodomain targets, demonstrating the specificity of the method. Conclusions Viable FRAP assays were established for 11 representative bromodomain-containing proteins that broadly cover the bromodomain phylogenetic tree. Addition of SAHA can overcome weak binding to chromatin, and the use of tandem bromodomain constructs can eliminate masking effects of other chromatin binding domains. Together, these results demonstrate that FRAP assays offer a potentially pan-bromodomain method for generating cell-based assays, allowing the testing of compounds with respect to cell permeability, on-target efficacy and selectivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700