The effect of bubble size on the efficiency and economics of harvesting microalgae by foam flotation
详细信息    查看全文
  • 作者:Thea Coward (1)
    Jonathan G. M. Lee (1)
    Gary S. Caldwell (2)

    1. School of Chemical Engineering and Advanced Materials
    ; Merz Court ; Newcastle University ; Newcastle upon Tyne ; NE1 7RU ; England ; UK
    2. School of Marine Science and Technology
    ; Ridley Building ; Newcastle University ; Newcastle upon Tyne ; NE1 7RU ; England ; UK
  • 关键词:Chlorella ; Biomass ; Harvesting ; Algae ; Biofuel
  • 刊名:Journal of Applied Phycology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:27
  • 期:2
  • 页码:733-742
  • 全文大小:496 KB
  • 参考文献:1. Ahmed, N, Jameson, GJ (1985) The effect of bubble size on the rate of flotation of fine particles. Int J Miner Process 14: pp. 195-215 CrossRef
    2. Al-Mashhadani, MKH, Bandulasena, HCH, Zimmerman, WB (2012) CO2 mass transfer induced through an airlift loop by a microbubble cloud generated by fluidic oscillation. Ind Eng Chem Res 51: pp. 1864-1877 CrossRef
    3. Azgomi, F, Gomez, CO, Finch, JA (2007) Correspondence of gas holdup and bubble size in presence of different frothers. Int J Miner Process 83: pp. 1-11 CrossRef
    4. Borowitzka, M (2013) High-value products from microalgae鈥攖heir development and commercialisation. J Appl Phycol 25: pp. 743-756 CrossRef
    5. Chen, YM, Liu, JC, Ju, YH (1998) Flotation removal of algae from water. Colloids Surf B 12: pp. 49-55 CrossRef
    6. Cheng, HC, Lemlich, R (1983) Errors in the measurement of the bubble size distribution in foam. Ind Eng Chem Fundam 22: pp. 105-109 CrossRef
    7. Chisti, YM (1989) Airlift biorectors. Elsevier, London
    8. Chisti, Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167: pp. 201-214 CrossRef
    9. Clift, R, Grace, JR, Weber, ME (1978) Bubbles, drops, and particles, chapter 7. Academic Press, New York
    10. Coward, T, Lee, JGM, Caldwell, GS (2013) Development of a foam flotation system for harvesting microalgae biomass. Algal Research 2: pp. 135-144 CrossRef
    11. Coward, T, Lee, JGM, Caldwell, GS (2014) Harvesting microalgae by CTAB-aided foam flotation increases lipid recovery and improves fatty acid methyl ester characteristics. Biomass Bioenergy 67: pp. 354-362 CrossRef
    12. Rijk, SE, Graaf, JHJM, Blanken, JG (1994) Bubble size in flotation thickening. Water Res 28: pp. 465-473 CrossRef
    13. Demirbas, A, Fatih Demirbas, M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52: pp. 163-170 CrossRef
    14. Derjaguin, BV, Dukhin, SS (1993) Theory of flotation of small and medium-size particles. Prog Surf Sci 43: pp. 241-266 CrossRef
    15. Du, LP, Ding, YQ, Prokop, A, Tanner, RD (2001) Measurement of bubble size distribution in protein foam fractionation column using capillary probe with photoelectric sensors. Appl Biochem Biotechnol 91: pp. 387-404 CrossRef
    16. Du, LP, Prokop, A, Tanner, RD (2002) Effect of bubble size on foam fractionation of ovalbumin. Appl Biochem Biotechnol 98: pp. 1075-1091 CrossRef
    17. Du, LP, Prokop, A, Tanner, RD (2003) Variation of bubble size distribution in a protein foam fractionation column measured using a capillary probe with photoelectric sensors. J Colloid Interface Sci 259: pp. 180-185 CrossRef
    18. Garg, S, Li, Y, Wang, L, Schenk, PM (2012) Flotation of marine microalgae: effect of algal hydrophobicity. Bioresour Technol 121: pp. 471-474 CrossRef
    19. Hankey, R (2013) Electric power monthly with data for May 2013. Independent statistics & analysis. U.S. Department of Energy, Washingtonpp. 187
    20. Hanotu, J, Bandulasena, HCH, Zimmerman, WB (2012) Microflotation performance for algal separation. Biotechnol Bioeng 109: pp. 1663-1673 CrossRef
    21. Hanotu, J, Ying, K, Shada, OI, Bandulasena, H, Zimmerman, WB (2013) Microalgae recovery by microflotation for biofuel production using metallic coagulants. Biofuels 4: pp. 363-369 CrossRef
    22. Hanotu, J, Karunakaran, E, Bandulasena, H, Biggs, C, Zimmerman, WB (2014) Harvesting and dewatering yeast by microflotation. Biochem Eng J82: pp. 174-182 CrossRef
    23. Jamialahmadi, M, Branch, C, M眉ller-Steinhagen, H (1994) Terminal bubble risevelocity in liquids. Transae Inst Chem Eng 72A: pp. 119-122
    24. Kulkarni, AA, Joshi, JB (2005) Bubble formation and bubble rise velocity in gas鈥搇iquid systems: a review. Ind Eng Chem Res 44: pp. 5873-5931 CrossRef
    25. Li, X, Evans, GM, Stevenson, P (2011) Process intensification of foam fractionation by successive contraction and expansion. Chem Eng Res Des 89: pp. 2298-2308 CrossRef
    26. Liu, JC, Chen, YM, Ju, YH (1999) Separation of algal cells from water by column flotation. Sep Sci Technol 34: pp. 2259-2272 CrossRef
    27. Morgan, G, Wiesmann, U (2001) Single and multistage foam fractionation of rinse water with alkyl ethoxylate surfactants. Sep Sci Technol 36: pp. 2247-2263 CrossRef
    28. Pahl, S, Lee, A, Kalaitzidis, T, Ashman, P, Sathe, S, Lewis, D Harvesting, thickening and dewatering microalgae biomass algae for biofuels and energy. In: Borowitzka, MA, Moheimani, NR eds. (2013) Algae for biofuels and energy. Springer, Dordrecht, pp. 165-185 CrossRef
    29. Sharma, KK, Garg, S, Li, Y, Malekizadeh, A, Schenk, PM (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4: pp. 397-407 CrossRef
    30. Stevenson, P (2006) Dimensional analysis of foam drainage. Chem Eng Sci 61: pp. 4503-4510 CrossRef
    31. Stevenson, P, Li, X Bubble size distributions in foam. In: Stevenson, P eds. (2012) Foam engineering: fundamentals and applications. Wiley & Sons, Chichesterpp. 153 CrossRef
    32. Stevenson, P, Sederman, AJ, Mantle, MD, Li, X, Gladden, LF (2010) Measurement of bubble size distribution in a gas鈥搇iquid foam using pulsed-field gradient nuclear magnetic resonance. J Colloid Interface Sci 352: pp. 114-120 CrossRef
    33. Tesar, V, Bandalusena, HCH (2011) Bistable diverter valve in microfluidics. Exp Fluids 50: pp. 1225-1233 CrossRef
    34. Tesar, V, Hung, CH, Zimmerman, WB (2006) No-moving-part hybrid-synthetic jet actuator. Sensors Actuators A Phys 125: pp. 159-169 CrossRef
    35. Wiley, PE, Brenneman, KJ, Jacobson, AE (2009) Improved algal harvesting using suspended air flotation. Water Environ Res 81: pp. 702-708 CrossRef
    36. Wong, CH, Hossain, MM, Davies, CE (2001) Performance of a continuous foam separation column as a function of process variables. Bioprocess Biosyst Eng 24: pp. 73-81 CrossRef
    37. Yang, H, Zhao, TS, Cheng, P (2004) Gas鈥搇iquid two-phase flow patterns in a miniature square channel with a gas permeable sidewall. Int J Heat Mass Transfer 47: pp. 5725-5739 CrossRef
    38. Yang J-T, Lin W-C, Tsai K-J, Huang K-J (2005) Fluidic oscillator. USA Patent, US6860157B1
    39. Yang, J-T, Chen, C-K, Tsai, K-J, Lin, W-Z, Sheen, H-J (2007) A novel fluidic oscillator incorporating step-shaped attachment walls. Sensor Actuat A Phys 135: pp. 476-483 CrossRef
    40. Yoon, RH, Luttrell, GH (1989) The effect of bubble size on fine particle flotation. Miner Process Extr Metall Rev 5: pp. 101-122 CrossRef
    41. Yuan, J-P, Peng, J, Yin, K, Wang, J-H (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55: pp. 150-165 CrossRef
    42. Zimmerman, WB, Tesar, V, Butler, S, Bandulasena, HCH (2008) Microbubble generation. Recent Patents Eng 2: pp. 1-8 CrossRef
    43. Zimmerman, WB, Hewakandamby, BN, Tesar, V, Bandulasena, HCH, Omotowa, OA (2009) On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation. Food Bioprod Process 87: pp. 215-227 CrossRef
    44. Zimmerman, WB, Tesar, V, Bandulasena, HCH (2011) Towards energy efficient nanobubble generation with fluidic oscillation. Curr Opin Colloid Interface Sci 16: pp. 350-356 CrossRef
  • 刊物主题:Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology;
  • 出版者:Springer Netherlands
  • ISSN:1573-5176
文摘
The effect of bubble size and rise velocity on the efficiency of a foam flotation microalgae harvesting unit was determined. Three sparger and input airflow combinations were used: (1) limewood sparger with constant airflow, (2) ceramic flat plate sparger with constant airflow and (3) ceramic flat plate sparger with an oscillating airflow. The ceramic sparger with oscillating flow generated the smallest bubbles within the liquid pool and the largest bubbles within the foam phase. This delivered the highest levels of biomass recovery due to enhanced bubble-algae collision and attachment efficiencies. The smaller bubbles generated by the ceramic sparger under constant or oscillating airflow had significantly faster rise velocities when compared to the larger bubbles produced by the limewood spargers. The faster velocities of the smaller bubbles were due to momentum transfer to the liquid phase. Analyses of the harvest economics revealed that the ceramic flat plate sparger with an oscillating airflow delivered the best overall cost-benefit relationship.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700