EgoNet: identification of human disease ego-network modules
详细信息    查看全文
  • 作者:Rendong Yang (10) (9)
    Yun Bai (11)
    Zhaohui Qin (9)
    Tianwei Yu (9)

    10. Minnesota Supercomputing Institute for Advanced Computational Research (MSI)
    ; University of Minnesota ; Minneapolis ; MN ; USA
    9. Department of Biostatistics and Bioinformatics
    ; Rollins School of Public Health ; Emory University ; 1518 Clifton Rd ; N.E ; Atlanta ; GA ; USA
    11. Department of Pharmaceutical Sciences
    ; School of Pharmacy ; Philadelphia College of Osteopathic Medicine ; Suwanee ; GA ; USA
  • 关键词:Gene expression ; Network medicine ; Machine learning ; Cancer biology ; Biological networks ; Microarray
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:808 KB
  • 参考文献:1. Barab谩si, A-L (2007) Network medicine鈥揻rom obesity to the 鈥渄iseasome鈥? N Engl J Med 357: pp. 404-407 CrossRef
    2. Barab谩si, A-L, Gulbahce, N, Loscalzo, J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12: pp. 56-68 CrossRef
    3. Chan, SY, Loscalzo, J (2012) The emerging paradigm of network medicine in the study of human disease. Circ Res 111: pp. 359-374 CrossRef
    4. Boutros, PC, Lau, SK, Pintilie, M, Liu, N, Shepherd, FA, Der, SD, Tsao, M-S, Penn, LZ, Jurisica, I (2009) Prognostic gene signatures for non-small-cell lung cancer. Proc Natl Acad Sci U S A 106: pp. 2824-2828 CrossRef
    5. Stratford, JK, Bentrem, DJ, Anderson, JM, Fan, C, Volmar, KA, Marron, JS, Routh, ED, Caskey, LS, Samuel, JC, Der, CJ, Thorne, LB, Calvo, BF, Kim, HJ, Talamonti, MS, Iacobuzio-Donahue, CA, Hollingsworth, MA, Perou, CM, Yeh, JJ (2010) A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med 7: pp. e1000307 CrossRef
    6. van 't Veer, LJ, Dai, H, van de Vijver, MJ, He, YD, Hart, AAM, Mao, M, Peterse, HL, van der Kooy, K, Marton, MJ, Witteveen, AT, Schreiber, GJ, Kerkhoven, RM, Roberts, C, Linsley, PS, Bernards, R, Friend, SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: pp. 530-536 CrossRef
    7. Yeoh, E-J, Ross, ME, Shurtleff, SA, Williams, WK, Patel, D, Mahfouz, R, Behm, FG, Raimondi, SC, Relling, MV, Patel, A, Cheng, C, Campana, D, Wilkins, D, Zhou, X, Li, J, Liu, H, Pui, C-H, Evans, WE, Naeve, C, Wong, L, Downing, JR (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: pp. 133-143 CrossRef
    8. Venet, D, Dumont, JE, Detours, V (2011) Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol 7: pp. e1002240 CrossRef
    9. Goh, K-I, Cusick, ME, Valle, D, Childs, B, Vidal, M, Barab谩si, A-L (2007) The human disease network. Proc Natl Acad Sci U S A 104: pp. 8685-8690 CrossRef
    10. Chen, L, Xuan, J, Riggins, RB, Wang, Y, Clarke, R (2013) Identifying protein interaction subnetworks by a bagging Markov random field-based method. Nucleic Acids Res 41: pp. e42 CrossRef
    11. Chuang, H-Y, Lee, E, Liu, Y-T, Lee, D, Ideker, T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3: pp. 140 CrossRef
    12. Ciriello, G, Cerami, E, Sander, C, Schultz, N (2012) Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 22: pp. 398-406 CrossRef
    13. Hwang, T, Tian, Z, Kuangy, R, Kocher, J-P (2008) Learning on Weighted Hypergraphs to Integrate Protein Interactions and Gene Expressions for Cancer Outcome Prediction. Eighth IEEE International Conference on Data Mining: 2008. IEEE Computer Society, Washington DC, pp. 293-302 CrossRef
    14. Nie, Y, Yu, J (2013) Mining breast cancer genes with a network based noise-tolerant approach. BMC Syst Biol 7: pp. 49 CrossRef
    15. Pujana, MA, Han, J-DJ, Starita, LM, Stevens, KN, Tewari, M, Ahn, JS, Rennert, G, Moreno, V, Kirchhoff, T, Gold, B, Assmann, V, Elshamy, WM, Rual, J-F, Levine, D, Rozek, LS, Gelman, RS, Gunsalus, KC, Greenberg, RA, Sobhian, B, Bertin, N, Venkatesan, K, Ayivi-Guedehoussou, N, Sol茅, X, Hern谩ndez, P, L谩zaro, C, Nathanson, KL, Weber, BL, Cusick, ME, Hill, DE, Offit, K (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39: pp. 1338-1349 CrossRef
    16. Su, J, Yoon, B-J, Dougherty, ER (2010) Identification of diagnostic subnetwork markers for cancer in human protein-protein interaction network. BMC Bioinforma 11: pp. S8 CrossRef
    17. Taylor, IW, Linding, R, Warde-Farley, D, Liu, Y, Pesquita, C, Faria, D, Bull, S, Pawson, T, Morris, Q, Wrana, JL (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27: pp. 199-204 CrossRef
    18. Winter, C, Kristiansen, G, Kersting, S, Roy, J, Aust, D, Kn枚sel, T, R眉mmele, P, Jahnke, B, Hentrich, V, R眉ckert, F, Niedergethmann, M, Weichert, W, Bahra, M, Schlitt, HJ, Settmacher, U, Friess, H, B眉chler, M, Saeger, H-D, Schroeder, M, Pilarsky, C, Gr眉tzmann, R (2012) Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput Biol 8: pp. e1002511 CrossRef
    19. Wang, X, Gulbahce, N, Yu, H (2011) Network-based methods for human disease gene prediction. Brief Funct Genomics 10: pp. 280-293 CrossRef
    20. Dutkowski, J, Ideker, T (2011) Protein networks as logic functions in development and cancer. PLoS Comput Biol 7: pp. e1002180 CrossRef
    21. Zhu, Y, Shen, X, Pan, W (2009) Network-based support vector machine for classification of microarray samples. BMC Bioinforma 10: pp. S21 CrossRef
    22. Borgatti, SP, Mehra, A, Brass, DJ, Labianca, G (2009) Network analysis in the social sciences. Science 323: pp. 892 CrossRef
    23. Jord谩n, F, Nguyen, T-P, Liu, W-C (2012) Studying protein-protein interaction networks: a systems view on diseases. Brief Funct Genomics 11: pp. 497-504 CrossRef
    24. Kamburov, A, Pentchev, K, Galicka, H, Wierling, C, Lehrach, H, Herwig, R (2011) ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res 39: pp. D712-D717 CrossRef
    25. Goodman, LA (1961) Snowball sampling. Ann Math Stat 32: pp. 148-170 CrossRef
    26. Cortes, C, Vapnik, V (1995) Support-vector networks. Mach Learn 20: pp. 273-297
    27. Cover, T, Hart, P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13: pp. 21-27 CrossRef
    28. Breiman, LEO (2001) Random forests. Mach Learn 45: pp. 5-32 CrossRef
    29. Li, Y, Zou, L, Li, Q, Haibe-Kains, B, Tian, R, Li, Y, Desmedt, C, Sotiriou, C, Szallasi, Z, Iglehart, JD, Richardson, AL, Wang, ZC (2010) Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nat Med 16: pp. 214-218 CrossRef
    30. Gluz, O, Liedtke, C, Gottschalk, N, Pusztai, L, Nitz, U, Harbeck, N (2009) Triple-negative breast cancer鈥揷urrent status and future directions. Ann Oncol 20: pp. 1913-1927 CrossRef
    31. Cancer Genome Atlas, N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490: pp. 61-70 CrossRef
    32. Das, J, Yu, H (2012) HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol 6: pp. 92 CrossRef
    33. Buchholz, TA, Weil, MM, Story, MD, Strom, EA, Brock, WA, McNeese, MD (1999) Tumor suppressor genes and breast cancer. Radiat Oncol Investig 7: pp. 55-65 CrossRef
    34. Kato, M, Yano, K, Matsuo, F, Saito, H, Katagiri, T, Kurumizaka, H, Yoshimoto, M, Kasumi, F, Akiyama, F, Sakamoto, G, Nagawa, H, Nakamura, Y, Miki, Y (2000) Identification of Rad51 alteration in patients with bilateral breast cancer. J Hum Genet 45: pp. 133-137 CrossRef
    35. Srinivasan, D, Plattner, R (2006) Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res 66: pp. 5648-5655 CrossRef
    36. Szczylik, C, Skorski, T, Nicolaides, NC, Manzella, L, Malaguarnera, L, Venturelli, D, Gewirtz, AM, Calabretta, B (1991) Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science 253: pp. 562-565 CrossRef
    37. Parker, BC, Engels, M, Annala, M, Zhang, W (2014) Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours. J Pathol 232: pp. 4-15 CrossRef
    38. An, X, Tiwari, AK, Sun, Y, Ding, PR, Ashby, CR, Chen, ZS (2010) BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res 34: pp. 1255-1268 CrossRef
    39. Conway, AB, Lynch, TW, Zhang, Y, Fortin, GS, Fung, CW, Symington, LS, Rice, PA (2004) Crystal structure of a Rad51 filament. Nat Struct Mol Biol 11: pp. 791-796 CrossRef
    40. Buisson, R, Dion-Cote, AM, Coulombe, Y, Launay, H, Cai, H, Stasiak, AZ, Stasiak, A, Xia, B, Masson, JY (2010) Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 17: pp. 1247-1254 CrossRef
    41. Bhattacharyya, A, Ear, US, Koller, BH, Weichselbaum, RR, Bishop, DK (2000) The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275: pp. 23899-23903 CrossRef
    42. Le Calvez-Kelm, F, Oliver, J, Damiola, F, Forey, N, Robinot, N, Durand, G, Voegele, C, Vallee, MP, Byrnes, G, Registry, BC, Hopper, JL, Southey, MC, Andrulis, IL, John, EM, Tavtigian, SV, Lesueur, F (2012) RAD51 and breast cancer susceptibility: no evidence for rare variant association in the Breast Cancer Family Registry study. PLoS One 7: pp. e52374 CrossRef
    43. Ricks-Santi, LJ, Sucheston, LE, Yang, Y, Freudenheim, JL, Isaacs, CJ, Schwartz, MD, Dumitrescu, RG, Marian, C, Nie, J, Vito, D, Edge, SB, Shields, PG (2011) Association of Rad51 polymorphism with DNA repair in BRCA1 mutation carriers and sporadic breast cancer risk. BMC Cancer 11: pp. 278 CrossRef
    44. Smolarz, B, Zadro偶ny, M, Duda-Szyma艅ska, J, Makowska, M, Samulak, D, Michalska, MM, Mojs, E, Bry艣, M, Forma, E, Romanowicz-Makowska, H (2013) RAD51 genotype and triple-negative breast cancer (TNBC) risk in Polish women. Pol J Pathol 64: pp. 39-43 CrossRef
    45. Mercier, P-L, Bachvarova, M, Plante, M, Gregoire, J, Renaud, M-C, Ghani, K, T锚tu, B, Bairati, I, Bachvarov, D (2011) Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer. Mol Oncol 5: pp. 438-453 CrossRef
    46. Berger, AH, Niki, M, Morotti, A, Taylor, BS, Socci, ND, Viale, A, Brennan, C, Szoke, J, Motoi, N, Rothman, PB, Teruya-Feldstein, J, Gerald, WL, Ladanyi, M, Pandolfi, PP (2010) Identification of DOK genes as lung tumor suppressors. Nat Genet 42: pp. 216-223 CrossRef
    47. Goel, RK, Miah, S, Black, K, Kalra, N, Dai, C, Lukong, KE (2013) The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1. FEBS J 280: pp. 4539-4559 CrossRef
    48. Nelms, K, Snow, AJ, Noben-Trauth, K (1998) Dok1 encoding p62(dok) maps to mouse chromosome 6 and human chromosome 2 in a region of translocation in chronic lymphocytic leukemia. Genomics 53: pp. 243-245 CrossRef
    49. Miah, S, Goel, RK, Dai, C, Kalra, N, Beaton-Brown, E, Bagu, ET, Bonham, K, Lukong, KE (2014) BRK Targets Dok1 for ubiquitin-mediated proteasomal degradation to promote cell proliferation and migration. PLoS One 9: pp. e87684 CrossRef
    50. Wang, Y, Lonard, DM, Yu, Y, Chow, DC, Palzkill, TG, Wang, J, Qi, R, Matzuk, AJ, Song, X, Madoux, F, Hodder, P, Chase, P, Griffin, PR, Zhou, S, Liao, L, Xu, J, O'Malley, BW (2014) Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res 74: pp. 1506-1517 CrossRef
    51. Paruthiyil, S, Cvoro, A, Tagliaferri, M, Cohen, I, Shtivelman, E, Leitman, DC (2011) Estrogen receptor beta causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclin B1, GADD45A, and BTG2. Breast Cancer Res Treat 129: pp. 777-784 CrossRef
    52. Wagner, M, Koslowski, M, Paret, C, Schmidt, M, Tureci, O, Sahin, U (2013) NCOA3 is a selective co-activator of estrogen receptor alpha-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. BMC Cancer 13: pp. 570 CrossRef
    53. Siouda, M, Yue, J, Shukla, R, Guillermier, S, Herceg, Z, Creveaux, M, Accardi, R, Tommasino, M, Sylla, BS (2012) Transcriptional regulation of the human tumor suppressor DOK1 by E2F1. Mol Cell Biol 32: pp. 4877-4890 CrossRef
    54. Mc Ilroy, M, Fleming, FJ, Buggy, Y, Hill, AD, Young, LS (2006) Tamoxifen-induced ER-alpha-SRC-3 interaction in HER2 positive human breast cancer; a possible mechanism for ER isoform specific recurrence. Endocr Relat Cancer 13: pp. 1135-1145 CrossRef
    55. Nahta, R (2012) Pharmacological strategies to overcome HER2 cross-talk and Trastuzumab resistance. Curr Med Chem 19: pp. 1065-1075 CrossRef
    56. Burness, ML, Grushko, TA, Olopade, OI (2010) Epidermal growth factor receptor in triple-negative and basal-like breast cancer: promising clinical target or only a marker?. Cancer J 16: pp. 23-32 CrossRef
    57. Liu, X, Yue, J, Frey, RS, Zhu, Q, Mulder, KM (1998) Transforming growth factor beta signaling through Smad1 in human breast cancer cells. Cancer Res 58: pp. 4752-4757
    58. Scollen, S, Luccarini, C, Baynes, C, Driver, K, Humphreys, MK, Garcia-Closas, M, Figueroa, J, Lissowska, J, Pharoah, PD, Easton, DF, Hesketh, R, Metcalfe, JC, Dunning, AM (2011) TGF-尾 signaling pathway and breast cancer susceptibility. Cancer Epidemiol Biomarkers Prev 20: pp. 1112-1119 CrossRef
    59. Bartholomeusz, C, Gonzalez-Angulo, AM, Liu, P, Hayashi, N, Lluch, A, Ferrer-Lozano, J, Hortob谩gyi, GN (2012) High ERK protein expression levels correlate with shorter survival in triple-negative breast cancer patients. Oncologist 17: pp. 766-774 CrossRef
    60. Huang, DW, Sherman, BT, Lempicki, RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: pp. 44-57 CrossRef
    61. Jonsson, PF, Bates, PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22: pp. 2291-2297 CrossRef
    62. Wachi, S, Yoneda, K, Wu, R (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21: pp. 4205-4208 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Mining novel biomarkers from gene expression profiles for accurate disease classification is challenging due to small sample size and high noise in gene expression measurements. Several studies have proposed integrated analyses of microarray data and protein-protein interaction (PPI) networks to find diagnostic subnetwork markers. However, the neighborhood relationship among network member genes has not been fully considered by those methods, leaving many potential gene markers unidentified. The main idea of this study is to take full advantage of the biological observation that genes associated with the same or similar diseases commonly reside in the same neighborhood of molecular networks. Results We present EgoNet, a novel method based on egocentric network-analysis techniques, to exhaustively search and prioritize disease subnetworks and gene markers from a large-scale biological network. When applied to a triple-negative breast cancer (TNBC) microarray dataset, the top selected modules contain both known gene markers in TNBC and novel candidates, such as RAD51 and DOK1, which play a central role in their respective ego-networks by connecting many differentially expressed genes. Conclusions Our results suggest that EgoNet, which is based on the ego network concept, allows the identification of novel biomarkers and provides a deeper understanding of their roles in complex diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700