Synthesis and characterization of PLD glass phosphate films doped with CdS
详细信息    查看全文
  • 作者:M. Elisa ; C. R. Iordanescu ; I. C. Vasiliu ; I. D. Feraru…
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:52
  • 期:5
  • 页码:2895-2901
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics;
  • 出版者:Springer US
  • ISSN:1573-4803
  • 卷排序:52
文摘
In the present work, optical, structural and morphological properties of CdS-doped phosphate films obtained by pulsed laser deposition (PLD) method were investigated. In the deposition process, a target based on a mixture composed of Li2O-Al2O3-BaO-La2O3-ZnO-P2O5 glass and CdS powder as dopant was used. The phosphate glass target was obtained by non-conventional wet route of raw reagents processing followed by melt-quenching technique. The complex oxide composition of the glass as well as the final PLD target consisting in a mixture of glass and CdS powder followed by pressing and heat treatment represents the novelty of the work. CdS dopant particles were highlighted by X-ray diffraction analysis as well as by Raman spectroscopy. Thus, cubic CdS particles having less than 10 nm size corroborated with specific LO (longitudinal optical phonons) and 2LO CdS Raman peaks from 300 and 600 cm−1, respectively, certified the presence of the dopant in the deposited films. Specific vibration modes for the vitreous phosphate matrix were revealed by fourier transform infrared spectroscopy, and spherulitic units characteristic to PLD technique were found by scanning electron microscopy and atomic force microscopy analyses. A relative large luminescence band located around 430 nm was provided by UV excitation, representative for CdS nanoparticles having about 9–10 nm size.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700