High growth rate of a-SiC:H films using ethane carbon source by HW-CVD method
详细信息    查看全文
  • 作者:MAHESH M KAMBLE (1)
    VAISHALI S WAMAN (1) (2)
    SANJAY S GHOSH (1)
    AZAM MAYABADI (1)
    VASANT G SATHE (3)
    T SHRIPATHI (3)
    HABIB M PATHAN (4)
    SANDESH R JADKAR (4)
  • 关键词:a ; SiC ; H thin films ; HW ; CVD ; FTIR spectroscopy ; X ; ray photoelectron spectroscopy (XPS) ; Raman spectroscopy
  • 刊名:Bulletin of Materials Science
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:36
  • 期:7
  • 页码:1177-1185
  • 全文大小:
  • 参考文献:1. Avigal Y, Schieber M and Levin R 1974 / J. Cryst. Growth 188 24
    2. Badaruddin M R, Muhamad M R and Rahman S A 2011 / Thin Solid Films 519 5082 CrossRef
    3. Basa D K and Smith FW1990 / Mater Res. Soc. Symp. Proc 162 439 CrossRef
    4. Bhatnagar M and Baliga B J 1993 / IEEE Trans. Electron Devices 40 645 CrossRef
    5. Bullot J and Schmit M P 1987 / Phys. Status Solidi B 143 245 CrossRef
    6. Chen T, Huang Y, Dasgupta A, Luysberg M, Houben L, Yang D, Carius R and Finger F 2012 / Sol. Energy Mater Sol. C 98 370
    7. Chen T, K?hler F, Heidt A, Huang Y, Finger F and Carius R 2011 / Thin Solid Films 519 4511 CrossRef
    8. Choi K, Uchida Y and Matsomuta M 1996 / Jpn J. Appl. Phys. 35 1648 CrossRef
    9. Choi W K, Loo F L, Ling C H, Loh F C and Tan K L 1995 / J. Appl. Phys. 78 7289 CrossRef
    10. Choyke W J, Matsunami H and Pensl G 1997 / Silicon carbide—A review of fundamental questions and applications to current device technology, 1st edn. (Akademie Verlag, Berlin: Wiley-VCH)
    11. Conde J P, Chu V, da SilvaM F, Kling A, Dai Z, Soares J C, Arekat S, Fedorov A, Berberan-Santos M N, Giorgis F and Pirri C F 1999 / J. Appl. Phys. 85 3327 CrossRef
    12. Dasgupta A, Huang Y, Houben L, Klein S, Finger F, Carius R and Luysberg M 2008a / Thin Solid Films 516 622 CrossRef
    13. Dasgupta A, Klein S, Houben L, Carius R, Finger F and Luysberg M 2008b / Thin Solid Films 516 618 CrossRef
    14. Demichelis F, Pirri C F, Tresso E and Trapinski T 1992 / J. Appl. Phys. 72 5641 CrossRef
    15. El Khakani M A, Chaker M, Jean J, Boily S and Pepin H 1993 / J. Appl. Phys. 74 2834 CrossRef
    16. El Khakani M A, Chaker M, O’Hern M E and Oliver W C 1997 / J. Appl. Phys. 82 4310 CrossRef
    17. Feldman D W, Parker J H, Choyke W J and Patrik L 1968 / Phys. Rev. 173 787 CrossRef
    18. Gat E., Ei Khakani M A, Chaker M, Jean J, Boily S, Pepin H, Kieffer J C, Durand J, Cross B and Rousseaux F 1992 / J. Mater. Res. 7 2478 CrossRef
    19. Han M K, Mastsumoto Y, Hirata G, Okamoto H and Hamakawa Y 1989 / J. Non-Cryst. Solids 115 195 CrossRef
    20. Hick S E, Fitzgerald A G, Baker S H and Dines T J 1990 / Philos. Mag. B 62 193 CrossRef
    21. Ishihara H, Murano M, Watahiki T, Yamada A, Konagai M and Nakamura Y 2006 / Thin Solid Films 508 99 CrossRef
    22. Jacob C, Pirouz P and Nishino S 2001 / Mater. Sci. Forum 127 338
    23. Jadkar S R, Sali J V, Takwale M G, Musale D V and Kshirsagar S T 2000 / Sol. Energy Mater. Sol. C 64 333
    24. Jin C G, Wu X M and Zhuge L J 2008, / Res. Lettrs Phys. Chem. p. 5
    25. Kaneko T, Hosokawa Y, Suga T and Miyakawa N 2006 / Microelectron. Eng. 83 41 mee.2005.10.052" target="_blank" title="It opens in new window">CrossRef
    26. Karch K, Pavone P, Windl W, Shutt O and Strauch D 1994 / Phys. Rev. B 50 17054 CrossRef
    27. Kasap S and Capper P 2006 / Springer handbook of electronic and photonic materials (USA: Springer Publication) p. 663
    28. Katiyar M, Yang Y H and Abelson J R 1995 / J. Appl. Phys. 78 1659 CrossRef
    29. Kim M T and Lee J 1997 / Thin Solid Films 303 173 CrossRef
    30. Klein S, Carius R, Finger F and Houben L 2006 / Thin Solid Films 501 169 CrossRef
    31. Kruangam D, Endo T, Wei G P, Nonomura S, Okamoto H and Hamakawa Y 1985 / J. Non-Cryst. Solids 77-8 429
    32. Lee W Y 1980 / J. Appl. Phys. 51 3365 CrossRef
    33. Lee Y M and Fieselmann B F 1991b / Appl. Phys. Lett. 59 1720 CrossRef
    34. Lee R C, Aita C R and Tran N C 1991a / J. Vac. Sci. Technol. A 9 1351 CrossRef
    35. Lucovsky G, Yang J, Chao S S, Tyler J E and Czubatyi W 1983 / Phys. Rev. B 28 3225 CrossRef
    36. Mandracci P 2001 Ph.D. Thesis, Trento University, Italy
    37. McKenzie D R 1985 / J. Phys. D 18 1935 CrossRef
    38. Mearns A M 1969 / Thin Solid Films 3 201 CrossRef
    39. Miyajima S, Sawamura M, Yamada A and Konagai M 2008 / Jpn J. Appl. Phys. 47 3368 CrossRef
    40. Montero I, Galan L and Najmi O 1994 / Phys. Rev. B 50 4881 CrossRef
    41. Mui K, Basa D K and Smith F W 1987 / Phys. Rev. B 35 8089 CrossRef
    42. Nakajima A, Sugita Y, Kawamura K, Tomita H and Yokoyama N 1996 / J. Appl. Phys. 80 4006 CrossRef
    43. Nakashima S and Harima H 1997 / Phys. Status Solidi A 162 39 CrossRef
    44. Nakashima S, Harima H, Tomita T and Suemoto T 2000 / Phys. Rev. B 62 16605 CrossRef
    45. Nakashima S and Tahara K 1989 / Phys. Rev. B 40 6339 CrossRef
    46. Pelletier M J 1999 / Analytical applications of Raman spectroscopy (UK: Blackwell Science).
    47. Rajab S M, Oliveira I C, Massi M, Maciel H S, Dos S G, Filho S and Mansano R D 2006 / Thin Solid Films 515 170 CrossRef
    48. Rajagopalan T, Wang X, Lahlouh B, Ramkumar C, Dutta P and Gangopadhyay S 2003 / J. Appl. Phys. 94 5252 CrossRef
    49. Ray S, Das D and Barua A K 1987 / Sol. Energy Mater. 15 43
    50. Ricciardi C, Fanchini G and Mandracci P 2003 / Diamond Relat. Mater. 12 1236 CrossRef
    51. Ricciardi C, Primiceli A, Germani G, Rusconi A and Giorgis F 2006 / J. Non-Cryst. Solids 352 1380 CrossRef
    52. Sha Z D, Wu X M and Zhuge L J 2006 / Phys. Lett. A 355 228 CrossRef
    53. Shanks H, Faug C J, Ley L, Cardona M, Demand F J and Kalbitzer S 1980 / Phys. Status Solidi B 100 43 CrossRef
    54. Smith K L and Black K M 1984 / J. Vac. Sci. Technol. A 2 744 CrossRef
    55. Soloman I, Schmidt M P, Celemand C and Driss Khodja M 1988a / Phys. Rev. B 38 13263 CrossRef
    56. Solomon I, Schmidt M P and Tran-Quic H 1988b / Phys. Rev. B 38 9895 CrossRef
    57. Soto G, Samano E C, Machorro R and Cota L 1998 / J. Vac. Sci. Technol. A 16 1311 CrossRef
    58. Swain B P 2006 / Surf. Coat. Technol. 201 1132 CrossRef
    59. Swain B P and Dusane R O 2006 / Mater. Chem. Phys. 99 240 matchemphys.2005.10.018" target="_blank" title="It opens in new window">CrossRef
    60. Swanepoel R 1983 / J. Phys. E: Sci. Instrum. 16 1214 CrossRef
    61. Tabata A, Komura Y, Narita T and Kondo A 2009 / Thin Solid Films 517 3516 CrossRef
    62. Takahashi K, Nishino S, Saraie J and Harada K 1992 / SPP amorphous and crystalline silicon carbide IV (eds) C Y Yang, et al. (Berlin, Heidelberg: Springer-Verlag) Vol. 71, p. 78
    63. Tanaka T, Maruyama E, Shimida T and Okamoto H 1999 / Amorphous silicon (Chichester: John Wiley & Sons Ltd.) p. 78
    64. Wada N, Gaczi P J and Solin S A 1980 / J. Non-Cryst. Solids 35/36 543 CrossRef
    65. Wang M, Diao X G, Huang A P, Chu P K and Wu Z 2007 / Surf. Coat. Technol. 201 6777 CrossRef
    66. Wang Q, Fu S Y, Qu S L and Liu W J 2007 / Solid State Commun. 144 277 CrossRef
    67. Wu T, Shen H, Cheng B, Pan Y, Liu B and Shen J 2011 / Appl. Surf. Sci. 258 999 CrossRef
  • 作者单位:MAHESH M KAMBLE (1)
    VAISHALI S WAMAN (1) (2)
    SANJAY S GHOSH (1)
    AZAM MAYABADI (1)
    VASANT G SATHE (3)
    T SHRIPATHI (3)
    HABIB M PATHAN (4)
    SANDESH R JADKAR (4)

    1. School of Energy Studies, University of Pune, Pune, 411 007, India
    2. Department of Physics, Modern College, Pune, 411 005, India
    3. UGC-DAE-CSR, University Campus, Khandawa Road, Indore, 452 017, India
    4. Department of Physics, University of Pune, Pune, 411 007, India
  • ISSN:0973-7669
文摘
Hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared using pure silane (SiH4) and ethane (C2H6), a novel carbon source, without hydrogen dilution using hot wire chemical vapour deposition (HW-CVD) method at low substrate temperature (200 °C) and at reasonably higher deposition rate (19·5 ?/s < r d < 3·2 ?/s). Formation of a-SiC:H films has been confirmed from FTIR, Raman and XPS analysis. Influence of deposition pressure on compositional, structural, optical and electrical properties has been investigated. FTIR spectroscopy analysis revealed that there is decrease in C–H and Si–H bond densities while, Si–C bond density increases with increase in deposition pressure. Total hydrogen content drops from 22·6 to 14·4 at.% when deposition pressure is increased. Raman spectra show increase in structural disorder with increase in deposition pressure. It also confirms the formation of nearly stoichiometric a-SiC:H films. Bandgap calculated using both Tauc’s formulation and absorption at 104 cm? shows decreasing trend with increase in deposition pressure. Decrease in refractive index and increase in Urbach energy suggests increase in structural disorder and microvoid density in the films. Finally, it has been concluded that C2H6 can be used as an effective carbon source in HW-CVD method to prepare stoichiometric a-SiC:H films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700