Modeling analysis of ant system with multiple tasks and its application to spatially adjacent cell state estimate
详细信息    查看全文
  • 作者:Mingli Lu (1) (2)
    Benlian Xu (2)
    Andong Sheng (1)
    Peiyi Zhu (2)
    Jian Shi (2)
  • 关键词:Ant system ; Cell tracking ; Object motion analysis
  • 刊名:Applied Intelligence
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:41
  • 期:1
  • 页码:13-29
  • 全文大小:
  • 参考文献:1. Fuhai L, Xiaobo Z, Jinwen M, Wong STC (2010) Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis. IEEE Trans Med Imaging 29:96鈥?05 CrossRef
    2. Padfield D, Rittscher J, Roysam B (2008) Spatio-temporal cell segmentation and tracking for automated screening. In: 5th IEEE international symposium on biomedical imaging: from nano to macro, ISBI 2008, pp 376鈥?79
    3. Quan W, Jean G, Luby-Phelps K (2007) Multiple interacting subcellular structure tracking by sequential Monte Carlo method. In: IEEE international conference on bioinformatics and biomedicine, BIBM 2007, pp 437鈥?42
    4. Xiaodong Y, Li H, Xiaobo Z (2006) Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans Circuits Syst I, Regul Pap 53:2405鈥?414 CrossRef
    5. Ray N, Acton ST, Ley K (2002) Tracking leukocytes in vivo with shape and size constrained active contours. IEEE Trans Med Imaging 21:1222鈥?235 CrossRef
    6. Mukherjee DP, Ray N, Acton ST (2004) Level set analysis for leukocyte detection and tracking. IEEE Trans Image Process 13:562鈥?72 CrossRef
    7. Hoseinnezhad R, Vo B-N, Vo B-T, Suter D (2012) Visual tracking of numerous targets via multi-Bernoulli filtering of image data. Pattern Recognit 45:3625鈥?635 CrossRef
    8. Meijering E, Dzyubachyk O, Smal I, van Cappellen WA (2009) Tracking in cell and developmental biology. Semin Cell Dev Biol 20:894鈥?02 CrossRef
    9. Cuevas E, Gonz谩lez M (2013) Multi-circle detection on images inspired by collective animal behavior. Appl Intell. doi:10.1007/s10489-012-0396-2
    10. Cuevas E, Senci贸n F, Zaldivar D, P茅rez-Cisneros M, Sossa H (2012) A multi-threshold segmentation approach based on artificial bee colony optimization. Appl Intell 37:321鈥?36 CrossRef
    11. Debeir O, Van Ham P, Kiss R, Decaestecker C (2005) Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes. IEEE Trans Med Imaging 24:697鈥?11 CrossRef
    12. Dorigo M (1992) Optimization, learning and natural algorithms. PhD Thesis, Politecnico di Milano, Italy
    13. Dorigo M, Gambardella LM (1997) Ant colonies for the travelling salesman problem. Biosystems 43:73鈥?1 CrossRef
    14. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1:53鈥?6 CrossRef
    15. Blum C (2005) Beam-ACO鈥攈ybridizing ant colony optimization with beam search: an application to open shop scheduling. Comput Oper Res 32:1565鈥?591 CrossRef
    16. Xu B, Chen Q, Wang X, Zhu J (2009) A novel estimator with moving ants. Simul Model Pract Theory 17:1663鈥?677 CrossRef
    17. Duan H, Liu S, Wang D, Yu X (2009) Design and realization of hybrid ACO-based PID and LuGre friction compensation controller for three degree-of-freedom high precision flight simulator. Simul Model Pract Theory 17:1160鈥?169 CrossRef
    18. Chialvo D, Millonas M (1995) How swarms build cognitive maps. In: Steels L (ed) The biology and technology of intelligent autonomous agents, vol 144. Springer, Berlin Heidelberg, pp 439鈥?50 CrossRef
    19. Kanade PM, Hall LO (2007) Fuzzy ants and clustering. IEEE Trans Syst Man Cybern, Part A, Syst Hum 37:758鈥?69 CrossRef
    20. Handl J, Knowles J, Dorigo M (2004) Strategies for the increased robustness of ant-based clustering. In: Engineering self-organising systems. Springer, Berlin, pp 90鈥?04 CrossRef
    21. Ramos V, Fernandes C, Rosa AC (2006) On self-regulated swarms, societal memory, speed and dynamics. In: Int conf on the simulation and synthesis of living systems, Bloomington, Indiana, USA, 3鈥? June 2006. arXiv:cs/0512002
    22. Wu J, Abbas-Turki A, El Moudni A (2012) Cooperative driving: an ant colony system for autonomous intersection management. Appl Intell 37:207鈥?22 CrossRef
    23. Rivero J, Cuadra D, Calle J, Isasi P (2012) Using the ACO algorithm for path searches in social networks. Appl Intell 36:899鈥?17 CrossRef
    24. Favuzza S, Graditi G, Sanseverino ER (2006) Adaptive and dynamic ant colony search algorithm for optimal distribution systems reinforcement strategy. Appl Intell 24:31鈥?2 CrossRef
    25. Huang Y, Essa I (2005) Tracking multiple objects through occlusions. In: IEEE computer society conference on computer vision and pattern recognition, CVPR 2005, vol聽2, pp 1051鈥?058
    26. Bose B, Wang X, Grimson E (2007) Multi-class object tracking algorithm that handles fragmentation and grouping. In: IEEE conference on computer vision and pattern recognition, CVPR鈥?7, pp聽1鈥? CrossRef
    27. Qian Y, Medioni G (2009) Multiple-target tracking by spatiotemporal Monte Carlo Markov chain data association. IEEE Trans Pattern Anal Mach Intell 31:2196鈥?210 CrossRef
    28. Wei Q, Schonfeld D, Mohamed M (2007) Real-time distributed multi-object tracking using multiple interactive trackers and a magnetic-inertia potential model. IEEE Trans Multimed 9:511鈥?19 CrossRef
    29. Khan SM, Shah M (2009) Tracking multiple occluding people by localizing on multiple scene planes. IEEE Trans Pattern Anal Mach Intell 31:505鈥?19 CrossRef
    30. Cielniak G, Duckett T, Lilienthal AJ (2010) Data association and occlusion handling for vision-based people tracking by mobile robots. Robot Auton Syst 58:435鈥?43 CrossRef
    31. Tao Y, Quan P, Jing L, Li SZ (2005) Real-time multiple objects tracking with occlusion handling in dynamic scenes. In: IEEE computer society conference on computer vision and pattern recognition, CVPR 2005, vol聽1, pp 970鈥?75
    32. Xue J, Zheng N, Geng J, Zhong X (2008) Tracking multiple visual targets via particle-based belief propagation. IEEE Trans Syst Man Cybern, Part B, Cybern 38:196鈥?09 CrossRef
    33. Xu B, Xu H, Zhu J (2011) Ant clustering PHD filter for multiple-target tracking. Appl Soft Comput 11:1074鈥?086 CrossRef
    34. Dufour A, Shinin V, Tajbakhsh S, Guillen-Aghion N, Olivo-Marin JC, Zimmer C (2005) Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans Image Process 14:1396鈥?410 CrossRef
    35. Nguyen NH, Keller S, Norris E, Huynh TT, Clemens MG, Shin MC (2011) Tracking colliding cells in vivo microscopy. IEEE Trans Biomed Eng 58:2391鈥?400 CrossRef
    36. Fuzhi Z, Yujing M, Na H, Hui L (2008) An ant-based fast text clustering approach using pheromone. In: Fifth international conference on fuzzy systems and knowledge discovery, FSKD 鈥?8, pp 385鈥?89
    37. Lee J-W, Choi B-S, Lee J-J (2011) Energy-efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones. IEEE Trans Ind Inform 7:419鈥?27 CrossRef
    38. Misra S, Dhurandher SK, Obaidat MS, Verma K, Gupta P (2010) A low-overhead fault-tolerant routing algorithm for mobile ad hoc networks: a scheme and its simulation analysis. Simul Model Pract Theory 18:637鈥?49 CrossRef
    39. Ramos V, Almeida F (2004) Artificial ant colonies in digital image habitats-a mass behaviour effect study on pattern recognition. arXiv:cs/0412086
    40. Merkle D, Middendorf M (2003) Ant colony optimization with global pheromone evaluation for scheduling a single machine. Appl Intell 18:105鈥?11 CrossRef
    41. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc, Ser C, Appl Stat 28:100鈥?08
    42. Brutzer S, Hoferlin B, Heidemann G (2011) Evaluation of background subtraction techniques for video surveillance. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1937鈥?944
    43. Wu M, Peng X (2010) Spatio-temporal context for codebook-based dynamic background subtraction. AE脺, Int J Electron Commun 64:739鈥?47 CrossRef
    44. Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20:1709鈥?724 CrossRef
    45. Bandi SR, Varadharajan A, Masthan M (2012) Performance evaluation of various foreground extraction algorithms for object detection in visual surveillance. Comput Eng Res 2:1339鈥?443
    46. Smal I, Draegestein K, Galjart N, Niessen W, Meijering E (2008) Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis. IEEE Trans Med Imaging 27:789鈥?04 CrossRef
    47. Juang RR, Levchenko A, Burlina P (2009) Tracking cell motion using GM-PHD. In: IEEE international symposium on biomedical imaging: from nano to macro, ISBI鈥?9, pp 1154鈥?157
    48. Lu M, Xu B, Sheng A (2012) Cell automatic tracking technique with particle filter. In: Advances in swarm intelligence. Springer, Berlin, pp 589鈥?95 CrossRef
  • 作者单位:Mingli Lu (1) (2)
    Benlian Xu (2)
    Andong Sheng (1)
    Peiyi Zhu (2)
    Jian Shi (2)

    1. School of Automation, Nanjing University of Science & Technology, Nanjing, 210094, China
    2. School of Electrical & Automatic Engineering, Changshu Institute of Technology, Changshu, 215500, China
  • ISSN:1573-7497
文摘
The problem of multi-cell tracking plays an important role in studying dynamic cell cycle behaviors. In this paper, a novel ant system with multiple tasks is modeled for jointly estimating the number of cells and individual states in cell image sequences. In our ant system, in addition to pure cooperative mechanism used in traditional ant colony optimization algorithm, we model and investigate another two types of ant working modes, namely, dual competitive mode and interactive mode with cooperation and competition to evaluate the tracking performance on spatially adjacent cells. For adjacent ant colonies, dual competitive mode encourages ant colonies with different tasks to work independently, whereas the interactive mode introduces a trade-off between cooperation and competition. In simulations of real cell image sequences, the multi-tasking ant system integrated with interactive mode yielded better tracking results than systems adopting pure cooperation or dual competition alone, both of which cause tracking failures by under-estimating and over-estimating the number of cells, respectively. Furthermore, the results suggest that our algorithm can automatically and accurately track numerous cells in various scenarios, and is competitive with state-of-the-art multi-cell tracking methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700