Large deformation failure analysis of the soil slope based on the material point method
详细信息    查看全文
  • 作者:Peng Huang ; Shun-li Li ; Hu Guo ; Zhi-ming Hao
  • 关键词:Material point method ; Soil slope ; Failure analysis ; Reposed angle
  • 刊名:Computational Geosciences
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:19
  • 期:4
  • 页码:951-963
  • 全文大小:1,487 KB
  • 参考文献:1.Duncan, J.M.: State of the art: limit equilibrium and finite element analysis of slopes. J. Geotech. Eng. 122, 577鈥?96 (1996)CrossRef
    2.Alkasawneh, W., Malkawi, A.I.H., Nusairat, J.H., Albataineh, N.: A comparative study of various commercially available programs in slope stability analysis. Comput. Geotech. 35, 428鈥?35 (2008)CrossRef
    3.Bui, H.H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32, 1537鈥?570 (2008)CrossRef
    4.L贸pez, Y.R., Roose, D., Morfa, C.R.: Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations. Comput. Mech. 51, 731鈥?41 (2013)CrossRef
    5.Zhang, J.F., Zhang, W.P., Zheng, Y.: A meshfree method and its applications to elasto-plastic problems. Journal of Zhejiang University SCIENCE 6A, 148鈥?54 (2005)CrossRef
    6.Wang, D.D., Li, Z.Y., Li, L., Wu, Y.C.: Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium. Sci. China Technol. Sci. 54, 573鈥?80 (2011)CrossRef
    7.Li, S.F., Liu, W.K.: Meshfree and particle methods and their applications. Appl. Mech. Rev. 55, 1鈥?4 (2002)CrossRef
    8.Valentino, R., Barla, G., Montrasio, L.: Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech. Rock. Eng. 41, 153鈥?77 (2008)CrossRef
    9.Utili, S., Nova, R.: DEM analysis of bonded granular geomaterials. Int. J. Numer. Anal. Methods Geomech. 32, 1997鈥?031 (2008)CrossRef
    10.Jiang, M., Murakami, A.: Distinct element method analyses of idealized bonded-granulate cut slope. Granul. Matter 14, 393鈥?10 (2012)CrossRef
    11.Wu, J.H.: Seismic landslide simulations in discontinuous deformation analysis. Comput. Geotech. 37, 594鈥?01 (2010)CrossRef
    12.Hwang, J.Y., Ohnishi, Y., Wu, J.H.: Numerical analysis of discontinuous rock masses using three-dimensional discontinuous deformation analysis (3D DDA). KSCE J. Civ. Eng. 8, 491鈥?96 (2004)CrossRef
    13.Doolinn, D.M.: Unified displacement boundary constraint formulation for discontinuous deformation analysis (DDA). Int. J. Numer. Anal. Methods Geomech. 29, 1199鈥?207 (2005)CrossRef
    14.Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118, 179鈥?96 (1994)CrossRef
    15.Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236鈥?52 (1995)CrossRef
    16.Wieckowski, Z., Youn, S.K, Yeon, J.H.: A particle-in-cell solution to the silo discharging problem. Int. J. Numer. Methods Eng. 45, 1203鈥?225 (1999)CrossRef
    17.Wieckowski, Z.: The material point method in large strain engineering problems. Comput. Methods Appl. Mech. Eng. 193, 4417鈥?438 (2004)CrossRef
    18.Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187, 529鈥?41 (2000)CrossRef
    19.Coetzee, C.J., Basson, A.H., Vermeer, P.A.: Discrete and continuum modelling of excavator bucket filling. J. Terrramech. 44, 177鈥?86 (2007)CrossRef
    20.Coetzee, C.J., Vermeer, P.A., Basson, A.H.: The modeling of anchors using the material point method. Int. J. Numer. Anal. Methods Geomech. 29, 879鈥?95 (2005)CrossRef
    21.Zhang, H.W., Wang, K.P., Chen, Z.: Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput. Methods Appl. Mech. Eng. 198, 1456鈥?472 (2009)CrossRef
    22.Andersen, S., Andersen, L.: Modelling of landslides with the material-point method. Comput. Geosci. 14, 137鈥?47 (2010)CrossRef
    23.Beuth, L., Wieckowski, Z., Vermeer, P.A.: Solution of quasi-static large-strain problems by the material point method. Int. J. Numer. Anal. Methods Geomech. 35, 1451鈥?465 (2011)
    24.Nairn, J.A.: Material point method calculations with explicit cracks. CMES-Comput. Modeling in Eng. Sci. 4, 649鈥?63 (2003)
    25.Huang, P., Zhang, X., Ma, S., Huang, X.: Contact algorithms for the material point method in impact and penetration simulation. Int. J. Numer. Methods Eng. 85, 498鈥?17 (2011)CrossRef
    26.Itasca Consulting Group, Inc.: FLAC-Fast Lagrangian Analysis of Continua theory and background (Version 5.0). Itasca Consulting Group, Inc, Minneapolis (2005)
    27.Chen, W.F., Mizuno, E.: Nonlinear analysis in soil mechanics: theory and implementation. Elsevier Science Publishers, Amsterdam (1990)
    28.Commend, S., Zimmermann, T.: Object-oriented nonlinear finite element programming: a primer. Adv. Eng. Softw. 32, 611鈥?28 (2001)CrossRef
    29.Bui, H.H.: Lagrangian mesh-free particle method (SPH) for large deformation and post-failure of geomaterial using elasto-plastic constitutive models. Ph. D. thesis, Ritsumeikan University, Japan (2007)
    30.Stoker, J.J: Water waves: the mathematical theory with applications. John Wiley & Sons, Inc., New York (1992)CrossRef
    31.Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214鈥?26 (1997)CrossRef
  • 作者单位:Peng Huang (1)
    Shun-li Li (1)
    Hu Guo (1)
    Zhi-ming Hao (1)

    1. Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang, 621900, China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Modeling and IndustrialMathematics
    Geotechnical Engineering
    Hydrogeology
    Soil Science and Conservation
  • 出版者:Springer Netherlands
  • ISSN:1573-1499
文摘
The failure analysis of the soil slope is a very important topic in the field of geomechanics. Being a fully Lagrangian particle method, the material point method (MPM) has distinct advantages in solving the extremely large deformation problem. For both cohesive and non-cohesive soil slopes, the large deformation failure problems are analyzed using MPM and the Drucker-Prager constitutive model. For verification of the numerical method, the comparison between MPM and analytical solutions of the dam break problem is presented. Moreover, the numerical results by MPM are compared with the experimental results for the collapse of the aluminum-bar assemblage. Simulations reveal the cohesive soil slope under gravity has a shear band failure mode. Computational results show the reposed angle of non-cohesive soil slope is less than the internal friction angle, and the reason for this phenomenon is presented. The purpose of this study is to give a further understanding of the slope failure in different soil types and provide a computational tool for the failure analysis of soil slopes. Keywords Material point method Soil slope Failure analysis Reposed angle

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700