The shared microbiota of humans and companion animals as evaluated from Staphylococcus carriage sites
详细信息    查看全文
  • 作者:Ana M Misic (1)
    Meghan F Davis (2)
    Amanda S Tyldsley (1)
    Brendan P Hodkinson (1)
    Pam Tolomeo (3)
    Baofeng Hu (4)
    Irving Nachamkin (4)
    Ebbing Lautenbach (3) (5)
    Daniel O Morris (6)
    Elizabeth A Grice (1)

    1. Department of Dermatology
    ; Perelman School of Medicine ; University of Pennsylvania ; 421 Curie Blvd ; 1007 Biomedical Research Building ; Philadelphia ; PA ; 19104 ; USA
    2. Department of Environmental Health Sciences
    ; Johns Hopkins Bloomberg School of Public Health ; Baltimore ; MD ; USA
    3. Department of Biostatistics and Epidemiology
    ; Perelman School of Medicine ; University of Pennsylvania ; Philadelphia ; PA ; USA
    4. Department of Pathology and Laboratory Medicine
    ; Perelman School of Medicine ; University of Pennsylvania ; Philadelphia ; PA ; USA
    5. Department of Medicine
    ; Perelman School of Medicine ; University of Pennsylvania ; Philadelphia ; PA ; USA
    6. Department of Clinical Studies
    ; School of Veterinary Medicine ; University of Pennsylvania ; Philadelphia ; PA ; USA
  • 关键词:16S rRNA ; Methicillin ; resistant Staphylococcus aureus (MRSA) ; Microbiome ; Pet ; Staphylococcus ; Skin and soft tissue infection (SSTI)
  • 刊名:Microbiome
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:3
  • 期:1
  • 全文大小:992 KB
  • 参考文献:1. Dantes R, Mu Y, Belflower R, Aragon D, Dumyati G, Harrison LH, et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern Med. 2013;173:1970鈥?.
    2. Mainous 3rd AG, Hueston WJ, Everett CJ, Diaz VA. Nasal carriage of Staphylococcus aureus and methicillin-resistant S aureus in the United States, 2001鈥?002. Ann Fam Med. 2006;4:132鈥?. CrossRef
    3. Gorwitz RJ. A review of community-associated methicillin-resistant Staphylococcus aureus skin and soft tissue infections. Pediatr Infect Dis J. 2008;27:1鈥?. CrossRef
    4. Cain CL, Morris DO, Rankin SC. Clinical characterization of Staphylococcus schleiferi infections and identification of risk factors for acquisition of oxacillin-resistant strains in dogs: 225 cases (2003鈥?009). J Am Vet Med Assoc. 2011;239:1566鈥?3. CrossRef
    5. van Duijkeren E, Catry B, Greko C, Moreno MA, Pomba MC, Pyorala S, et al. Review on methicillin-resistant Staphylococcus pseudintermedius. J Antimicrob Chemother. 2011;66:2705鈥?4. CrossRef
    6. Weese JS, van Duijkeren E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet Microbiol. 2010;140:418鈥?9. CrossRef
    7. Mermel LA, Cartony JM, Covington P, Maxey G, Morse D. Methicillin-resistant Staphylococcus aureus colonization at different body sites: a prospective, quantitative analysis. J Clin Microbiol. 2011;49:1119鈥?1. CrossRef
    8. Brazil AB, Iverson SA, Vasse A, Lautenbach EL, Rankin S, Morris DO, Davis MF. Anatomical patterns of colonization of pets with staphylococcal species in homes of people with methicillin-resistant Staphylococcus aureus (MRSA) skin or soft tissue infection (SSTI). In: North American veterinary dermatology forum. Phoeniz, AZ. 2014.
    9. Chehoud C, Rafail S, Tyldsley AS, Seykora JT, Lambris JD, Grice EA. Complement modulates the cutaneous microbiome and inflammatory milieu. Proc Natl Acad Sci U S A. 2013;110:15061鈥?. CrossRef
    10. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337:1115鈥?. CrossRef
    11. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244鈥?3. CrossRef
    12. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465:346鈥?. CrossRef
    13. Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol. 2010;64:143鈥?2. CrossRef
    14. Davis MF, Iverson SA, Baron P, Vasse A, Silbergeld EK, Lautenbach E, et al. Household transmission of meticillin-resistant Staphylococcus aureus and other staphylococci. Lancet Infect Dis. 2012;12:703鈥?6. CrossRef
    15. Davis MF, Peterson AE, Julian KG, Greene WH, Price LB, Nelson K, et al. Household risk factors for colonization with multidrug-resistant Staphylococcus aureus isolates. PLoS One. 2013;8:e54733. CrossRef
    16. Loeb MB, Main C, Eady A, Walker-Dilks C. Antimicrobial drugs for treating methicillin-resistant Staphylococcus aureus colonization. Cochrane Database Syst Rev. 2003;4:CD003340.
    17. Simor AE. Staphylococcal decolonisation: an effective strategy for prevention of infection? Lancet Infect Dis. 2011;11:952鈥?2. CrossRef
    18. Shastry LRJ, Lascher S. Community-associated methicillin-resistant staphylococcus aureus skin and soft tissue infections in men who have sex with men in New York City. Arch Intern Med. 2007;167:854鈥?. CrossRef
    19. Miller LG, Diep BA. Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46:752鈥?0. CrossRef
    20. Bramble M, Morris D, Tolomeo P, Lautenbach E. Potential role of pet animals in household transmission of methicillin-resistant Staphylococcus aureus: a narrative review. Vector Borne Zoonotic Dis. 2011;11:617鈥?0. CrossRef
    21. Ferreira JP, Anderson KL, Correa MT, Lyman R, Ruffin F, Reller LB, et al. Transmission of MRSA between companion animals and infected human patients presenting to outpatient medical care facilities. PLoS One. 2011;6:e26978. CrossRef
    22. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013;2:e00458.
    23. Oh J, Conlan S, Polley EC, Segre JA, Kong HH. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med. 2012;4:77. CrossRef
    24. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190鈥?. CrossRef
    25. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207鈥?4. CrossRef
    26. Ebrahami AO, Khoshnevisan R. A study on the prevalent bacterial population in oral cavity of owned healthy dogs and cats. Intas Polivet. 2010;11:217鈥?3.
    27. Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T, Milella L, et al. The canine oral microbiome. PLoS One. 2012;7:e36067. CrossRef
    28. Sturgeon A, Stull JW, Costa MC, Weese JS. Metagenomic analysis of the canine oral cavity as revealed by high-throughput pyrosequencing of the 16S rRNA gene. Vet Microbiol. 2013;162:891鈥?. CrossRef
    29. Sturgeon A, Pinder SL, Costa MC, Weese JS. Characterization of the oral microbiota of healthy cats using next-generation sequencing. Vet J. 2014;201:223鈥?. CrossRef
    30. Havstad S, Wegienka G, Zoratti EM, Lynch SV, Boushey HA, Nicholas C, et al. Effect of prenatal indoor pet exposure on the trajectory of total IgE levels in early childhood. J Allergy Clin Immunol. 2011;128:880鈥?. e884. CrossRef
    31. Mandhane PJ, Sears MR, Poulton R, Greene JM, Lou WY, Taylor DR, et al. Cats and dogs and the risk of atopy in childhood and adulthood. J Allergy Clin Immunol. 2009;124:745鈥?0. e744. CrossRef
    32. Lautenbach E, Nachamkin I, Hu B, Fishman NO, Tolomeo P, Prasad P, et al. Surveillance cultures for detection of methicillin-resistant Staphylococcus aureus: diagnostic yield of anatomic sites and comparison of provider- and patient-collected samples. Infect Control Hosp Epidemiol. 2009;30:380鈥?. CrossRef
    33. Davis MF, Baron P, Price LB, Williams DL, Jeyaseelan S, Hambleton IR, et al. Dry collection and culture methods for recovery of methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains from indoor home environments. Appl Environ Microbiol. 2012;78:2474鈥?. CrossRef
    34. Sasaki T, Tsubakishita S, Tanaka Y, Sakusabe A, Ohtsuka M, Hirotaki S, et al. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J Clin Microbiol. 2010;48:765鈥?. CrossRef
    35. Garcia-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11:595鈥?03. CrossRef
    36. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621鈥?. CrossRef
    37. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics. 2012;13:31. CrossRef
    38. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537鈥?1. CrossRef
    39. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335鈥?. CrossRef
    40. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150鈥?. CrossRef
    41. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658鈥?. CrossRef
    42. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al. Human Microbiome Consortium, Petrosino JF, Knight R, Birren BW. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011;21:494鈥?04. CrossRef
    43. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261鈥?. CrossRef
    44. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266鈥?. CrossRef
    45. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641鈥?0. CrossRef
    46. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57鈥?. CrossRef
    47. R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2010.
    48. Clarke KR. Nonparametric multivariate analyses of changes in community structure. Aust J Ecol. 1993;19:117鈥?3. CrossRef
    49. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606. CrossRef
    50. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498鈥?04. CrossRef
  • 刊物主题:Medical Microbiology; Bioinformatics; Microbial Ecology; Microbiology; Microbial Genetics and Genomics; Virology;
  • 出版者:BioMed Central
  • ISSN:2049-2618
文摘
Background Staphylococcus aureus and other coagulase-positive staphylococci (CPS) colonize skin and mucous membrane sites and can cause skin and soft tissue infections (SSTIs) in humans and animals. Factors modulating methicillin-resistant S. aureus (MRSA) colonization and infection in humans remain unclear, including the role of the greater microbial community and environmental factors such as contact with companion animals. In the context of a parent study evaluating the households of outpatients with community MRSA SSTI, the objectives of this study were 1) to characterize the microbiota that colonizes typical coagulase-positive Staphylococcus spp. carriage sites in humans and their companion pets, 2) to analyze associations between Staphylococcus infection and carriage and the composition and diversity of microbial communities, and 3) to analyze factors that influence sharing of microbiota between pets and humans. Results We enrolled 25 households containing 56 pets and 30 humans. Sampling locations were matched to anatomical sites cultured by the parent study for MRSA and other CPS. Bacterial microbiota were characterized by sequencing of 16S ribosomal RNA genes. Household membership was strongly associated with microbial communities, in both humans and pets. Pets were colonized with a greater relative abundance of Proteobacteria, whereas people were colonized with greater relative abundances of Firmicutes and Actinobacteria. We did not detect differences in microbiota associated with MRSA SSTI, or carriage of MRSA, S. aureus or CPS. Humans in households without pets were more similar to each other than humans in pet-owning households, suggesting that companion animals may play a role in microbial transfer. We examined changes in microbiota over a 3-month time period and found that pet staphylococcal carriage sites were more stable than human carriage sites. Conclusions We characterized and identified patterns of microbiota sharing and stability between humans and companion animals. While we did not detect associations with MRSA SSTI, or carriage of MRSA, S. aureus or CPS in this small sample size, larger studies are warranted to fully explore how microbial communities may be associated with and contribute to MRSA and/or CPS colonization, infection, and recurrence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700