Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism
详细信息    查看全文
  • 作者:Federica Filice ; Karl Jakob Vörckel ; Ayse Özge Sungur ; Markus Wöhr…
  • 关键词:Parvalbumin ; Shank1 ; Shank3 ; Autism ; Perineuronal net ; Calcium ; binding protein ; Calcium homeostasis
  • 刊名:Molecular Brain
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 全文大小:2,959 KB
  • 参考文献:1.Centers for Disease Control and Prevention. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63(2):1–21.
    2.Levitt P, Campbell DB. The genetic and neurobiologic compass points toward common signaling dysfunctions in autism spectrum disorders. J Clin Invest. 2009;119(4):747–54. doi:10.​1172/​JCI37934 .PubMedCentral PubMed CrossRef
    3.Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol. 2012. doi:10.​1101/​cshperspect.​a009886 .PubMedCentral PubMed
    4.Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9(5):341–55. doi:10.​1038/​nrg2346 .PubMedCentral PubMed CrossRef
    5.Pardo CA, Eberhart CG. The neurobiology of autism. Brain Pathol. 2007;17(4):434–47. doi:10.​1111/​j.​1750-3639.​2007.​00102.​x .PubMed CrossRef
    6.LeBlanc JJ, Fagiolini M. Autism: a “critical period” disorder? Neural Plast. 2011;2011:921680. doi:10.​1155/​2011/​921680 .PubMedCentral PubMed
    7.Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2(5):255–67.PubMed CrossRef
    8.Ebert DH, Greenberg ME. Activity-dependent neuronal signalling and autism spectrum disorder. Nature. 2013;493(7432):327–37. doi:10.​1038/​nature11860 .PubMedCentral PubMed CrossRef
    9.Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10(9), e1004580. doi:10.​1371/​journal.​pgen.​1004580 .PubMedCentral PubMed CrossRef
    10.Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci. 2004;5(10):771–81. doi:10.​1038/​nrn1517 .PubMed CrossRef
    11.Guilmatre A, Huguet G, Delorme R, Bourgeron T. The emerging role of SHANK genes in neuropsychiatric disorders. Dev Neurobiol. 2014;74(2):113–22. doi:10.​1002/​dneu.​22128 .PubMed CrossRef
    12.Ting JT, Peca J, Feng G. Functional consequences of mutations in postsynaptic scaffolding proteins and relevance to psychiatric disorders. Annu Rev Neurosci. 2012;35:49–71. doi:10.​1146/​annurev-neuro-062111-150442 .PubMed CrossRef
    13.Sato D, Lionel AC, Leblond CS, Prasad A, Pinto D, Walker S, et al. SHANK1 deletions in males with autism spectrum disorder. Am J Hum Genet. 2012;90(5):879–87. doi:10.​1016/​j.​ajhg.​2012.​03.​017 .PubMedCentral PubMed CrossRef
    14.Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet. 2010;42(6):489–91. doi:10.​1038/​ng.​589 .PubMed CrossRef
    15.Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368–72. doi:10.​1038/​nature09146 .PubMedCentral PubMed CrossRef
    16.Leblond CS, Heinrich J, Delorme R, Proepper C, Betancur C, Huguet G, et al. Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet. 2012;8(2), e1002521. doi:10.​1371/​journal.​pgen.​1002521 .PubMedCentral PubMed CrossRef
    17.Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genet. 2007;39(1):25–7. doi:10.​1038/​ng1933 .PubMedCentral PubMed CrossRef
    18.Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455(7215):903–11. doi:10.​1038/​nature07456 .PubMedCentral PubMed CrossRef
    19.Won H, Lee HR, Gee HY, Mah W, Kim JI, Lee J, et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature. 2012;486(7402):261–5. doi:10.​1038/​nature11208 .PubMed CrossRef
    20.Gauthier J, Spiegelman D, Piton A, Lafreniere RG, Laurent S, St-Onge J, et al. Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(3):421–4. doi:10.​1002/​ajmg.​b.​30822 .PubMed CrossRef
    21.Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet. 2007;81(6):1289–97. doi:10.​1086/​522590 .PubMedCentral PubMed CrossRef
    22.Bonaglia MC, Giorda R, Borgatti R, Felisari G, Gagliardi C, Selicorni A, et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet. 2001;69(2):261–8. doi:10.​1086/​321293 .PubMedCentral PubMed CrossRef
    23.Phelan MC, Rogers RC, Saul RA, Stapleton GA, Sweet K, McDermid H, et al. 22q13 deletion syndrome. Am J Med Genet. 2001;101(2):91–9.PubMed CrossRef
    24.Wilson HL, Wong AC, Shaw SR, Tse WY, Stapleton GA, Phelan MC, et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet. 2003;40(8):575–84.PubMedCentral PubMed CrossRef
    25.Manning MA, Cassidy SB, Clericuzio C, Cherry AM, Schwartz S, Hudgins L, et al. Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics. 2004;114(2):451–7.PubMed CrossRef
    26.Phelan MC. Deletion 22q13.3 syndrome. Orphanet J Rare Dis. 2008;3:14. doi:10.​1186/​1750-1172-3-14 .PubMedCentral PubMed CrossRef
    27.Wohr M, Roullet FI, Hung AY, Sheng M, Crawley JN. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One. 2011;6(6), e20631. doi:10.​1371/​journal.​pone.​0020631 .PubMedCentral PubMed CrossRef
    28.Sungur AO, Vorckel KJ, Schwarting RK, Wohr M. Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: developmental aspects and effects of social context. J Neurosci Methods. 2014;234:92–100. doi:10.​1016/​j.​jneumeth.​2014.​05.​003 .PubMed CrossRef
    29.Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, et al. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci. 2008;28(7):1697–708. doi:10.​1523/​JNEUROSCI.​3032-07.​2008 .PubMedCentral PubMed CrossRef
    30.Silverman JL, Turner SM, Barkan CL, Tolu SS, Saxena R, Hung AY, et al. Sociability and motor functions in Shank1 mutant mice. Brain Res. 2011;1380:120–37. doi:10.​1016/​j.​brainres.​2010.​09.​026 .PubMedCentral PubMed CrossRef
    31.Ey E, Torquet N, Le Sourd AM, Leblond CS, Boeckers TM, Faure P, et al. The Autism ProSAP1/Shank2 mouse model displays quantitative and structural abnormalities in ultrasonic vocalisations. Behav Brain Res. 2013;256:677–89. doi:10.​1016/​j.​bbr.​2013.​08.​031 .PubMed CrossRef
    32.Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature. 2012;486(7402):256–60. doi:10.​1038/​nature11015 .PubMed
    33.Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism. 2010;1(1):15. doi:10.​1186/​2040-2392-1-15 .PubMedCentral PubMed CrossRef
    34.Yang M, Bozdagi O, Scattoni ML, Wohr M, Roullet FI, Katz AM, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci. 2012;32(19):6525–41. doi:10.​1523/​JNEUROSCI.​6107-11.​2012 .PubMedCentral PubMed CrossRef
    35.Kouser M, Speed HE, Dewey CM, Reimers JM, Widman AJ, Gupta N, et al. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J Neurosci. 2013;33(47):18448–68. doi:10.​1523/​JNEUROSCI.​3017-13.​2013 .PubMedCentral PubMed CrossRef
    36.Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437–42. doi:10.​1038/​nature09965 .PubMedCentral PubMed CrossRef
    37.Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet. 2011;20(15):3093–108. doi:10.​1093/​hmg/​ddr212 .PubMedCentral PubMed CrossRef
    38.Jiang YH, Ehlers MD. Modeling autism by SHANK gene mutations in mice. Neuron. 2013;78(1):8–27. doi:10.​1016/​j.​neuron.​2013.​03.​016 .PubMedCentral PubMed CrossRef
    39.Herbert MR. SHANK3, the synapse, and autism. N Engl J Med. 2011;365(2):173–5. doi:10.​1056/​NEJMcibr1104261 .PubMed CrossRef
    40.Wohr M. Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: detailed spectrographic analyses and developmental profiles. Neurosci Biobehav Rev. 2014;43:199–212. doi:10.​1016/​j.​neubiorev.​2014.​03.​021 .PubMed CrossRef
    41.Chattopadhyaya B, Cristo GD. GABAergic circuit dysfunctions in neurodevelopmental disorders. Front Psychiatry. 2012;3:51. doi:10.​3389/​fpsyt.​2012.​00051 .PubMedCentral PubMed CrossRef
    42.Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ. GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev. 2012;36(9):2044–55. doi:10.​1016/​j.​neubiorev.​2012.​07.​005 .PubMedCentral PubMed CrossRef
    43.Somogyi P, Klausberger T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol. 2005;562(Pt 1):9–26. doi:10.​1113/​jphysiol.​2004.​078915 .PubMedCentral PubMed CrossRef
    44.Toledo-Rodriguez M, Goodman P, Illic M, Wu C, Markram H. Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J Physiol. 2005;567(Pt 2):401–13.PubMedCentral PubMed CrossRef
    45.Marin O. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci. 2012;13(2):107–20. doi:10.​1038/​nrn3155 .PubMed
    46.Zikopoulos B, Barbas H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front Hum Neurosci. 2013;7:609. doi:10.​3389/​fnhum.​2013.​00609 .PubMedCentral PubMed CrossRef
    47.Gogolla N, Leblanc JJ, Quast KB, Sudhof TC, Fagiolini M, Hensch TK. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord. 2009;1(2):172–81. doi:10.​1007/​s11689-009-9023-x .PubMedCentral PubMed CrossRef
    48.Wohr M, Orduz D, Gregory P, Moreno H, Khan U, Vorckel KJ, et al. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. Translat Psychiatry. 2015;5, e525. doi:10.​1038/​tp.​2015.​19 .CrossRef
    49.Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci U S A. 2000;97(24):13372–7.PubMedCentral PubMed CrossRef
    50.Muller M, Felmy F, Schwaller B, Schneggenburger R. Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of held that accelerates the decay of Ca2+ and short-term facilitation. J Neurosci. 2007;27(9):2261–71.PubMed CrossRef
    51.Collin T, Chat M, Lucas MG, Moreno H, Racay P, Schwaller B, et al. Developmental changes in parvalbumin regulate presynaptic Ca2+ signaling. J Neurosci. 2005;25(1):96–107.PubMed CrossRef
    52.Manseau F, Marinelli S, Mendez P, Schwaller B, Prince DA, Huguenard JR, et al. Desynchronization of neocortical networks by asynchronous release of GABA at autaptic and synaptic contacts from fast-spiking interneurons. PLoS Biol. 2010. doi:10.​1371/​journal.​pbio.​1000492 .PubMedCentral PubMed
    53.Orduz D, Bischop DP, Schwaller B, Schiffmann SN, Gall D. Parvalbumin tunes spike-timing and efferent short-term plasticity in striatal fast spiking interneurons. J Physiol. 2013;591(Pt 13):3215–32. doi:10.​1113/​jphysiol.​2012.​250795 .PubMedCentral PubMed CrossRef
    54.Servais L, Bearzatto B, Schwaller B, Dumont M, De Saedeleer C, Dan B, et al. Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k. Eur J Neurosci. 2005;22(4):861–70.PubMed CrossRef
    55.Vreugdenhil M, Jefferys JG, Celio MR, Schwaller B. Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. J Neurophysiol. 2003;89(3):1414–22.PubMed CrossRef
    56.Schwaller B. The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells. Biochim Biophys Acta. 2012;1820(8):1294–303. doi:10.​1016/​j.​bbagen.​2011.​11.​008 .PubMed CrossRef
    57.Schwaller B, Tetko IV, Tandon P, Silveira DC, Vreugdenhil M, Henzi T, et al. Parvalbumin deficiency affects network properties resulting in increased susceptibility to epileptic seizures. Mol Cell Neurosci. 2004;25(4):650–63.PubMed CrossRef
    58.Schwaller B, Dick J, Dhoot G, Carroll S, Vrbova G, Nicotera P, et al. Prolonged contraction-relaxation cycle of fast-twitch muscles in parvalbumin knockout mice. Am J Physiol. 1999;276(2 Pt 1):C395–403.PubMed
    59.Moreno H, Burghardt NS, Vela-Duarte D, Masciotti J, Hua F, Fenton AA, et al. The absence of the calcium-buffering protein calbindin is associated with faster age-related decline in hippocampal metabolism. Hippocampus. 2012;22(5):1107–20. doi:10.​1002/​hipo.​20957 .PubMedCentral PubMed CrossRef
    60.West MJ, Slomianka L, Gundersen HJ. Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec. 1991;231(4):482–97. doi:10.​1002/​ar.​1092310411 .PubMed CrossRef
    61.Paxinos GFK. The Mouse Brain in Stereotaxic Coordinates. Second Edition. San Diego: Academic; 2001.
    62.West MJ, Ostergaard K, Andreassen OA, Finsen B. Estimation of the number of somatostatin neurons in the striatum: an in situ hybridization study using the optical fractionator method. J Comp Neurol. 1996;370(1):11–22. doi:10.​1002/​(SICI)1096-9861(19960617)370:​1<11:​:​AID-CNE2>3.​0.​CO;2-O .PubMed CrossRef
    63.Gundersen HJ, Jensen EB, Kieu K, Nielsen J. The efficiency of systematic sampling in stereology--reconsidered. J Microsc. 1999;193(Pt 3):199–211.PubMed CrossRef
    64.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi:10.​1006/​meth.​2001.​1262 .PubMed CrossRef
    65.Maetzler W, Stünitz H, Bendfeldt K, Vollenweider F, Schwaller B, Nitsch C. Microcalcification after excitotoxicity is enhanced in transgenic mice expressing parvalbumin in all neurons, may commence in neuronal mitochondria, and undergoes structural modifications over time. Neuropathol Appl Neurobiol. 2009;186(1):78–88.
    66.Chen G, Racay P, Bichet S, Celio MR, Eggli P, Schwaller B. Deficiency in parvalbumin, but not in calbindin D-28k upregulates mitochondrial volume and decreases smooth endoplasmic reticulum surface selectively in a peripheral, subplasmalemmal region in the soma of Purkinje cells. Neuroscience. 2006;142(1):97–105.PubMed CrossRef
    67.Hartig W, Brauer K, Bruckner G. Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. Neuroreport. 1992;3(10):869–72.PubMed CrossRef
    68.Celio MR, Blümcke I. Perineuronal nets- a specialized form of extracellular matrix in the adult nervous system. Brain Res Rev. 1994;19:128–45.PubMed CrossRef
    69.Haunso A, Ibrahim M, Bartsch U, Letiembre M, Celio MR, Menoud P. Morphology of perineuronal nets in tenascin-R and parvalbumin single and double knockout mice. Brain Res. 2000;864(1):142–5.PubMed CrossRef
    70.Meyer AH, Katona I, Blatow M, Rozov A, Monyer H. In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci. 2002;22(16):7055–64.PubMed
    71.Bitanihirwe BK, Woo TU. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev. 2014;45:85–99. doi:10.​1016/​j.​neubiorev.​2014.​03.​018 .PubMedCentral PubMed CrossRef
    72.Selby L, Zhang C, Sun QQ. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci Lett. 2007;412(3):227–32. doi:10.​1016/​j.​neulet.​2006.​11.​062 .PubMedCentral PubMed CrossRef
    73.Sadakata T, Washida M, Iwayama Y, Shoji S, Sato Y, Ohkura T, et al. Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J Clin Invest. 2007;117(4):931–43. doi:10.​1172/​JCI29031 .PubMedCentral PubMed CrossRef
    74.Tripathi PP, Sgado P, Scali M, Viaggi C, Casarosa S, Simon HH, et al. Increased susceptibility to kainic acid-induced seizures in Engrailed-2 knockout mice. Neuroscience. 2009;159(2):842–9. doi:10.​1016/​j.​neuroscience.​2009.​01.​007 .PubMed CrossRef
    75.Ellegood J, Anagnostou E, Babineau BA, Crawley JN, Lin L, Genestine M, et al. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol Psychiatry. 2014;20(1):118–25. doi:10.​1038/​mp.​2014.​98 .PubMedCentral PubMed CrossRef
    76.Gogolla N, Takesian AE, Feng G, Fagiolini M, Hensch TK. Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron. 2014;83(4):894–905. doi:10.​1016/​j.​neuron.​2014.​06.​033 .PubMedCentral PubMed CrossRef
    77.Bockers TM, Segger-Junius M, Iglauer P, Bockmann J, Gundelfinger ED, Kreutz MR, et al. Differential expression and dendritic transcript localization of Shank family members: identification of a dendritic targeting element in the 3’ untranslated region of Shank1 mRNA. Mol Cell Neurosci. 2004;26(1):182–90. doi:10.​1016/​j.​mcn.​2004.​01.​009 .PubMed CrossRef
    78.Banerjee S, Riordan M, Bhat MA. Genetic aspects of autism spectrum disorders: insights from animal models. Front Cell Neurosci. 2014;8:58. doi:10.​3389/​fncel.​2014.​00058 .PubMedCentral PubMed CrossRef
    79.Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316(5823):445–9. doi:10.​1126/​science.​1138659 .PubMedCentral PubMed CrossRef
    80.Silverman JL, Crawley JN. The promising trajectory of autism therapeutics discovery. Drug Discov Today. 2014;19(7):838–44. doi:10.​1016/​j.​drudis.​2013.​12.​007 .PubMed CrossRef
    81.Zeidan-Chulia F, Rybarczyk-Filho JL, Salmina AB, de Oliveira BH, Noda M, Moreira JC. Exploring the multifactorial nature of autism through computational systems biology: calcium and the Rho GTPase RAC1 under the spotlight. Neruomol Med. 2013. doi:10.​1007/​s12017-013-8224-3 .
    82.Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474(7351):380–4. doi:10.​1038/​nature10110 .PubMedCentral PubMed CrossRef
    83.Krey JF, Dolmetsch RE. Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr Opin Neurobiol. 2007;17(1):112–9. doi:10.​1016/​j.​conb.​2007.​01.​010 . S0959-4388(07)00012-8 [pii].PubMed CrossRef
    84.Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R, et al. Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry. 2010;15(1):38–52. doi:10.​1038/​mp.​2008.​63 .PubMed CrossRef
    85.Carayol J, Sacco R, Tores F, Rousseau F, Lewin P, Hager J, et al. Converging evidence for an association of ATP2B2 allelic variants with autism in male subjects. Bio Psychiatry. 2011;70(9):880–7. doi:10.​1016/​j.​biopsych.​2011.​05.​020 .CrossRef
    86.Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med. 2014;370(13):1209–19. doi:10.​1056/​NEJMoa1307491 .PubMedCentral PubMed CrossRef
    87.Ye Q, Miao QL. Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex. Matrix Bio. 2013;32(6):352–63. doi:10.​1016/​j.​matbio.​2013.​04.​001 .CrossRef
    88.Nowicka D, Soulsby S, Skangiel-Kramska J, Glazewski S. Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex. Eur J Neurosci. 2009;30(11):2053–63. doi:10.​1111/​j.​1460-9568.​2009.​06996.​x .PubMed CrossRef
    89.Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK, et al. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci U S A. 2013;110(22):9130–5. doi:10.​1073/​pnas.​1300454110 .PubMedCentral PubMed CrossRef
    90.Belichenko PV, Miklossy J, Belser B, Budka H, Celio MR. Early destruction of the extracellular matrix around parvalbumin- immunoreactive interneurons in Creutzfeldt-Jakob disease. Neurobiol Dis. 1999;6(4):269–79.PubMed CrossRef
    91.Hays SA, Huber KM, Gibson JR. Altered neocortical rhythmic activity states in Fmr1 KO mice are due to enhanced mGluR5 signaling and involve changes in excitatory circuitry. J Neurosci. 2011;31(40):14223–34. doi:10.​1523/​JNEUROSCI.​3157-11.​2011 .PubMedCentral PubMed CrossRef
    92.Paluszkiewicz SM, Olmos-Serrano JL, Corbin JG, Huntsman MM. Impaired inhibitory control of cortical synchronization in fragile X syndrome. J Neurophysiol. 2011;106(5):2264–72. doi:10.​1152/​jn.​00421.​2011 .PubMedCentral PubMed CrossRef
    93.Zikopoulos B, Barbas H. Changes in prefrontal axons may disrupt the network in autism. J Neurosci. 2010;30(44):14595–609. doi:10.​1523/​JNEUROSCI.​2257-10.​2010 .PubMedCentral PubMed CrossRef
    94.Palmen SJ, van Engeland H, Hof PR, Schmitz C. Neuropathological findings in autism. Brain. 2004;127(Pt 12):2572–83. doi:10.​1093/​brain/​awh287 .PubMed CrossRef
    95.Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137–45. doi:10.​1016/​j.​tins.​2007.​12.​005 .PubMed CrossRef
    96.Mao W, Watanabe T, Cho S, Frost JL, Truong T, Zhao X, et al. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons. Eur J Neurosci. 2015;41(8):1025–35. doi:10.​1111/​ejn.​12877 .PubMed CrossRef
    97.Eggermann E, Jonas P. How the ‘slow’ Ca2+ buffer parvalbumin affects transmitter release in nanodomain-coupling regimes. Nat Neurosci. 2012;15(1):20–2. doi:10.​1038/​nn.​3002 .CrossRef
    98.Alberi L, Lintas A, Kretz R, Schwaller B, Villa AE. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. J Neurophysiol. 2013;109(11):2827–41. doi:10.​1152/​jn.​00375.​2012 .PubMed CrossRef
    99.Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38(5):950–7. doi:10.​1093/​schbul/​sbs010 .PubMedCentral PubMed CrossRef
    100.Berridge MJ. Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res. 2014;357(2):477–92. doi:10.​1007/​s00441-014-1806-z .PubMed CrossRef
    101.Lewis DA. Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol. 2014;26:22–6. doi:10.​1016/​j.​conb.​2013.​11.​003 .PubMed CrossRef
    102.De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15. doi:10.​1038/​nature13772 .PubMedCentral PubMed CrossRef
    103.Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371–9. doi:10.​1016/​S0140-6736(12)62129-1 .PubMedCentral CrossRef
    104.Schwaller B. The Regulation of a Cell’s Ca2+ Signaling Toolkit: The Ca2+ Homeostasome. Adv Exp Med Biol. 2012;740:1–25. doi:10.​1007/​978-94-007-2888-2_​1 .PubMed CrossRef
    105.Delorme R, Ey E, Toro R, Leboyer M, Gillberg C, Bourgeron T. Progress toward treatments for synaptic defects in autism. Nat Med. 2013;19(6):685–94. doi:10.​1038/​nm.​3193 .PubMed CrossRef
  • 作者单位:Federica Filice (1)
    Karl Jakob Vörckel (2)
    Ayse Özge Sungur (2)
    Markus Wöhr (2)
    Beat Schwaller (1)

    1. Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland
    2. Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraβe 18, D-35032, Marburg, Germany
  • 刊物主题:Neurosciences; Neurology;
  • 出版者:BioMed Central
  • ISSN:1756-6606
文摘
Background A reduction of the number of parvalbumin (PV)-immunoreactive (PV+) GABAergic interneurons or a decrease in PV immunoreactivity was reported in several mouse models of autism spectrum disorders (ASD). This includes Shank mutant mice, with SHANK being one of the most important gene families mutated in human ASD. Similar findings were obtained in heterozygous (PV+/-) mice for the Pvalb gene, which display a robust ASD-like phenotype. Here, we addressed the question whether the observed reduction in PV immunoreactivity was the result of a decrease in PV expression levels and/or loss of the PV-expressing GABA interneuron subpopulation hereafter called “Pvalb neurons”. The two alternatives have important implications as they likely result in opposing effects on the excitation/inhibition balance, with decreased PV expression resulting in enhanced inhibition, but loss of the Pvalb neuron subpopulation in reduced inhibition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700