1 = 2.2 pc and from the region ?2 = 1 pc. The high-velocity jet with a diameter ?3 = 0.2 pc is ejected from the central part of the disk, while the remnant falls onto the forming central body. The ejection velocity of the high-velocity flow is v ?0.06c. At a distance up to ? pc, the jet accelerates to an apparent velocity v ?8c. Further out, uniform motion is observed within ? pc following which deceleration occurs. The jet structure corresponding to a conical diverging helix with an increasing pitch is determined by gasdynamic instability. The counterjet structure is a mirror reflection of the nearby part of the jet. The brightness temperature of the fragment of the high-velocity flow at the exit from the counterjet nozzle is T b ?(1012?013) K. The disk inclined at an angle of 60° to the plane of the sky shadows the jet ejector region. Ring currents observed in the tangential directions as parallel chains of components are excited in the rotating flows. The magnetic fields of the rotating bipolar outflow and the disk are aligned and oriented along the rotation axis. The translational motions of the jet and counterjet are parallel and antiparallel to the magnetic field, which determines their acceleration or deceleration. The quasar core is surrounded by a thermal plasma. The sizes of the HII region reach ?0 pc. The electron density decreases with increasing distance from the center from N e ?108 to ?05 cm?. The observed emission from the jet fragments at the exit from the nozzle is partially absorbed by the thermal plasma, is refracted with increasing distance—moves with an apparent superluminal velocity, and decelerates as it goes outside the HII region." />
Kinematics of the active region of the quasar 3C 345
详细信息    查看全文
  • 作者:L. I. Matveyenko (1)
    S. S. Sivakon-/a> (1)
  • 关键词:3C 345 ; AGNs ; accretion disk ; jet ; counterjet ; polarization ; absorption ; refraction
  • 刊名:Astronomy Letters
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:39
  • 期:8
  • 页码:481-512
  • 全文大小:1954KB
  • 参考文献:1. M. G. Abramyan, Astrofizika 52, 136 (2009).
    2. M. G. Abramyan and L. I. Matveenko, Astrofizika 55, 397 (2012).
    3. H. D. Aller and M. F. Aller, / Low Frequency Variability Exragalactic Radio Sources, Ed. by W. D. Cotton and S. R. Spangler (Publ. NRAO, Green Bank, 1982), p. 105.
    4. L. B. B??th, A. E. E. Rogers, M. Inoue, et al., Astron. Astrophys. 257 (1992)
    5. J. A. Biretta, R. L. Moore, and M.H. Cohen, Astrophys. J. 308, 93 (1986). CrossRef
    6. G. S. Bisnovatyi-Kogan, B. M. Komberg, and A. M. Fridman, Sov. Astron. 13, 369 (1969).
    7. J. H. Bregman, A. E. Glassgold, P. J. Huggins, et al., Astroph. J. 301, 708 (1986). CrossRef
    8. S. Britzen et al., Astron. Lett. 27, 1 (2001). CrossRef
    9. S. Britzen, T. R. Krihbaum, R. G. Strom, et al., Astron. Astrophys. 444, 443 (2005). CrossRef
    10. M. H. Cohen, K. I. Kellermann, D. B. Shaffer, et al., Nature 268, 405 (1977). CrossRef
    11. V. L. Ginzburg, / Theoretical Physics and Astrophysics (Nauka, Moscow, 1981; Pergamon, Oxford, 1979), rus. p. 211.
    12. A. K. Gopal-Krishna, A. K. Singal, and S. Krishnamohan, Astron. Astrophys. 140, 19 (1984).
    13. S. G. Jorstad, A. P. Marcher, M. L. Lister, et al., Astrophys. J. 130, 418 (2005).
    14. K. I. Kellermann and I. I. K. Pauliny Toth, Astrophys. J. 155, L31 (1969). CrossRef
    15. K. I. Kellermann, D. L. Jauncey, M. H. Cohen, et al., Astrophys. J. 169, 1 (1971). CrossRef
    16. R. I. Kollgaard, J. F. C. Wardle, and D. H. Roberts, Astron. J. 97, 1550 (1989). CrossRef
    17. V. I. Kostenko and L. I. Matveyenko, Sov. Astron. 12, 936 (1968).
    18. P. P. Kronberg, R. V. Lovelase, G. Lapenta, and S. A. Colgate, Astrophys. J. Lett. 37, 483 (2011).
    19. R. V. E. Lovelace, H. L. Berg, and Condopouloc, Astrophys. J. 379, 696 (1991). CrossRef
    20. R. V. E. Lovelace and M. M. Romanova, Astrophys. J. 596, L159 (2003). CrossRef
    21. F. Mantovani, R. Fanti, L. Gregorini, et al., Astron. Astrophys. 233, 535 (1990).
    22. A. P. Marscher, CP856, Relativistic Jets, Ed. by P. A. Hughes and J. N. Bregman (Am. Inst. Phys., 2006).
    23. A. P. Marscher, S. G. Jorstad, V. M. Larionov, et al., Astrophys. J. 710, L126 (2010). CrossRef
    24. L. I. Matveyenko, N. S. Kardashev, and G. B. Sholomitskii, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 8, 651 (1965).
    25. L. I. Matveyenko, I. I. K. Pauliny-Toth, B. Sherwood, et al., Astron. Lett. 12, 25(59) (1986).
    26. L. I. Matveyenko, D. A. Graham, I. I. K. Pauliny-Toth, et al., Astron. Lett. 18, 379 (1992).
    27. L. I. Matveyenko, Astron. Lett. 19, 108 (1993).
    28. L. I. Matveyenko, I. I. K. Pauliny-Toth, L. B. B??th, et al., Astron. Astrophys. 312, 738 (1996)
    29. L. I. Matveyenko, I. I. K. Pauliny-Toth, D. A. Graham, et al., Astron. Lett. 22, 14 (1996).
    30. L. I. Matveyenko and A. I. Witzel, Astron. Lett. 25, 555 (1999).
    31. L. I. Matveyenko, D. A. Graham, and D. A. Zensus, Astron. Rep. 49, 259 (2005). CrossRef
    32. L. I. Matveyenko, Astron. Not. 328, 411 (2007).
    33. L. I. Matveyenko, S. S. Sivacon, S. V. Seleznev, et al., in / Proceedings of the 10th European VLBI Network Symposium and EVN Users Meeting: VLBI and the New Generation of Radio Arrays, Manchester, UK, Sept. 20-4, 2010 (2010a).
    34. L. I. Matveyenko, S. S. Sivacon, S. G. Erstadt, and A. P. Marsher, Astron. Lett. 36, 151 (2010). CrossRef
    35. L. I. Matveyenko and S. V. Seleznev, Astron. Lett. 37, 154 (2011a). CrossRef
    36. L. I. Matveyenko and S. V. Seleznev, Astron. Lett. 37, 515 (2011b). CrossRef
    37. M. L. Meeks, / Astrophysics, Part C: Radio Observations, V-12 (Academic Press, 1976), p. 253.
    38. M. Miyoshi, J. Moran, J. Herrnstein, et al., Nature 373, 127 (1955). CrossRef
    39. H. Netzer, / Astrophysical Jets and Their Engines, Ed. by W. Kundt (Reidel, Dordrecht, 1987), p. 103.
    40. L. M. Ozernoi and A. D. Chernin, Sov. Astron. 11, 907 (1967).
    41. L. Padrielli, R. Fanti, A. Ficarra, et al., IAU Symp., No. 129, 297 (1987).
    42. L. Padrielli, / Lowq Frequensy Variability of Extragalactic Radio Sources, Ed. by W. D. Cotton and S. R. Spangler (Publ. Nat. Radio Astro. Observ., Green Bank, 1982), p. 1.
    43. J. L. Pawsey and R. N. Bracewell, / Radioastronomy (Clarendon, Oxford, 1955; Inostr. Liter., Moscow, 1955), p. 96.
    44. I. I. Pronik, Sov. Astron. 16, 628 (1987).
    45. F. T. Rantakyro, L. B. Baath, I. I. K. Pauliny-Toth, et al., Astron. Astrophys. 259, 8 (1992).
    46. F. T. Rantakyro, L. B. Baath, and L. I. Matveyenko, Astron. Astrophys. 293, 44 (1995).
    47. E. Ros, J. A. Zensus, and A. P. Lobanov, Astron. Astrophys. 354, 55 (2000).
    48. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 278, 337 (1993).
    49. S. R. Spangler and W. D. Cotton, Astron. J. 86, 730 (1981). CrossRef
    50. S. R. Spangler, R. Fanti, Gregorini, and L. Padrielli, Astron. Astrophys. 209, 315 (1989).
    51. S. C. Unwin, M. H. Cohen, N. J. Pearson, et al., Astrophys. J. 271, 536 (1983). CrossRef
    52. G. L. Versker and K. I. Kellermann, / Galactic and Extragalactic Radio Astronomy (Phys. Today 29, 1 (1976); Mir, Moscow, 1976).
    53. J. A. Zensus, M. H. Cohen, and S. C. Unwin, Astrophys. J. 443, 35 (1995). CrossRef
  • 作者单位:L. I. Matveyenko (1)
    S. S. Sivakon-/a> (1)

    1. Space Research Institute, Russian Academy of Sciences, Profsoyuznaya ul. 84/32, Moscow, 117997, Russia
文摘
The fine structure of the quasar 3C 345 in polarized emission at 7 mm and 2 cm has been investigated. The kinematics is shown to correspond to an anticentrifuge: the thermal plasma of the surrounding space accretes onto the disk, flows to the center, and is ejected in the form of a rotating bipolar outflow that carries away the excess angular momentum as it accumulates. The bipolar outflow consists of a high-velocity central jet surrounded by a low-velocity component. The low-velocity flows are the rotating hollow tubes ejected from the peripheral part of the disk with a diameter ~?sub class="a-plus-plus">1 = 2.2 pc and from the region ?2 = 1 pc. The high-velocity jet with a diameter ?3 = 0.2 pc is ejected from the central part of the disk, while the remnant falls onto the forming central body. The ejection velocity of the high-velocity flow is v ?0.06c. At a distance up to ? pc, the jet accelerates to an apparent velocity v ?8c. Further out, uniform motion is observed within ? pc following which deceleration occurs. The jet structure corresponding to a conical diverging helix with an increasing pitch is determined by gasdynamic instability. The counterjet structure is a mirror reflection of the nearby part of the jet. The brightness temperature of the fragment of the high-velocity flow at the exit from the counterjet nozzle is T b ?(1012?013) K. The disk inclined at an angle of 60° to the plane of the sky shadows the jet ejector region. Ring currents observed in the tangential directions as parallel chains of components are excited in the rotating flows. The magnetic fields of the rotating bipolar outflow and the disk are aligned and oriented along the rotation axis. The translational motions of the jet and counterjet are parallel and antiparallel to the magnetic field, which determines their acceleration or deceleration. The quasar core is surrounded by a thermal plasma. The sizes of the HII region reach ?0 pc. The electron density decreases with increasing distance from the center from N e ?108 to ?05 cm?. The observed emission from the jet fragments at the exit from the nozzle is partially absorbed by the thermal plasma, is refracted with increasing distance—moves with an apparent superluminal velocity, and decelerates as it goes outside the HII region.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700