A two-stage evolution model for the Amantaytau orogenic-type gold deposit in Uzbekistan
详细信息    查看全文
  • 作者:Jan Pasava ; Hartwig Frimmel ; Anna Vymazalová ; Petr Dobes…
  • 关键词:Amantaytau ; Uzbekistan ; Black shale ; Orogenic gold ; Sedimentary Au source ; Pyrite chemistry
  • 刊名:Mineralium Deposita
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:48
  • 期:7
  • 页码:825-840
  • 全文大小:919KB
  • 参考文献:1. Babaev KL (1983) Genesis of gold deposits (on examples of Central Asia). Tashkent, SAIGIMS, pp 11-6 (in Russian)
    2. Badalov ST (1978) Methodology of the study of different forms of gold associated with organic matter in rocks and ores (in Russian). Tashkent, Zapiski of the Uzbek Division, All-Russian Mineralogical Society 31:79-0
    3. Badalov ST (1980) Research principles of classification of ore-forming processes (on the example of gold). Tashkent, Zapiski of the Uzbek Division, All-Russian Mineralogical Society 33:72-4
    4. Bakker RJ, Diamond LW (2000) Determination of the composition and molar volume of H2O–CO2 fluid inclusions by microthermometry. Geochim Cosmochim Acta 64:1753-764 CrossRef
    5. Barchudarov VA, Shashorin JN (1985) Gold potential of lithological complexes in the Central Kyzalkum area (in Russian). Tashkent, Zapiski of the Uzbek Division, All-Russian Mineralogical Society 38:105-07
    6. Bau M, Dulski P (1999) Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem Geol 155:77-0 CrossRef
    7. Bel’kova LN, Ognev VN (1970) Age and origin of gold mineralization of the Muruntau. Dokl Akad Nauk SSSR 197:100-02
    8. Berger BR, Drew LJ, Goldfarb RJ, Snee LW (1994) An epoch of gold riches: the late Paleozoic in Uzbekistan, Central Asia. SEG Newslett 16:1-7
    9. Bodnar RJ, Vityk MO (1995) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals: methods and applications. Short course of the working group “Inclusions in Minerals- Virginia Polytechnic Institute, Blacksburg, pp 117-30
    10. Bortnikov NS, Prokof’ef VY, Razdolina NV (1996) Origin of the Charmitan gold-quartz deposit (Uzbekistan). Geol Ore Depos 38:208-26
    11. Buchardt B, Clausen J, Thomsen E (1986) Carbon isotope composition of lower Palaeozoic kerogen: effects of maturation. Org Geochem 10:127-34 CrossRef
    12. Chang Z, Large RR, Maslenikov V (2008) Sulfur isotopes in sediment-hosted orogenic gold deposits: evidence for an early timing and a seawater sulfur source. Geology 36:971-74 CrossRef
    13. Chiaradia M, Konopelko D, Seltmann R, Cliff RA (2006) Lead isotope variations across terrane boundaries of the Tien Shan and Chinese Altay. Miner Depos 41:411-28 CrossRef
    14. Cole A, Seltmann R (2000) The role of granitoids during Variscan orogenic gold mineralization in the Tien Shan and Ural Mountain belts of Central Eurasia. Doc du BRGM 297:110-11
    15. Coveney RM Jr (2000) Metalliferous shales and the role of organic matter, with examples from China, Poland, and the United States. Rev Econ Geol 9:251-80
    16. Emsbo P, Koenig AE (2007) Transport of Au in petroleum: evidence from the northern Carlin trend, Nevada. In: Andrew CJ (ed) Digging Deeper, Proceedings of the 9th Biennial SGA Meeting, 20-3 August 2007, vol 1. Irish Association for Economic Geology, Dublin, pp 695-98
    17. Garkovets VG (1973) New data concerning the origin of gold in deposits in black shales. Zapiski Mineralogicheskogo Obshchestva Usbekistana 31:25-8 (in Russian)
    18. Graupner T, Kempe U, Spooner ETC, Bray CJ, Kremenetsky AA, Irmer G (2001) Microthermometric, laser Raman spectroscopic, and volatile/ion chromatographic analysis of hydrothermal fluids in the Paleozoic Muruntau Au-quartz vein ore field, Uzbekistan. Econ Geol 96:1-3
    19. Graupner T, Niedermann S, Kempe U, Klemd R, Bechtel A (2006) Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data. Geochim Cosmochim Acta 70:5356-370 CrossRef
    20. Graupner T, Niedermann S, Rhede D, Kempe U, Seltmann R, Williams CT, Klemd R (2010) Multiple sources for mineralizing fluids in the Charmitan gold(?tungsten) mineralization (Uzbekistan). Miner Depos 45:667-82 CrossRef
    21. Grinenko VA (1962) The preparation of sulphur dioxide for isotopic analysis. Zh Neorgan Khim 7:2478-3
    22. Ivankin PF, Nasarova NI (1991) Types of ore forming systems. Geologija Rudnikh Meshdoroshdenii 5:3-3 (in Russian)
    23. Jukov AV (2009) The Amantaytau gold ore deposits, Uzbekistan: new data on the material composition of ores. In: Williams PJ (ed) Smart science for exploration and mining. Proceedings of the 10th Biennial SGA Meeting, Townsville, vol 1: 111-13
    24. Kasemann S, Meixner A, Rocholl A, Vennemann T, Schmitt A, Wiedenbeck M (2001) Boron and oxygen isotope composition of certified reference materials NIST SRM 610/612, and reference materials JB-2?G and JR-2?G. Geostandards Newsletter 25:405-16 CrossRef
    25. Kotov NV, Poritskaya LG (1990) Generalized genetic model of gold accumulation in gold sulfide metasomatic ore formation in blackschist series (central Kyzylkumy). Sov Geol Geophys 31(11):46-3
    26. Kotov NV, Poritskaya LG (1992) The Muruntau gold deposit: its geologic structure, metasomatic mineral associations and origin. Int Geol Rev 34:77-7 CrossRef
    27. Kotov NV, Zverev YN, Poritskaya LG (1993) Zoloto-chernoslantsevoe rudoobrazovanie (Tsentral’nye Kyzylkumy) (gold ore formation in black shales of the central Kyzyl Kum). Nevskii Kur’er, St. Petersburg, p 112
    28. Kurbanov NK, Romanov VL, Arifulov CRR, Guieiw NY, Kukshev VL, Vikhter BY, Khazan KE, Kucherevsky PG (1991) Geological guidebook to the gold deposits of Uzbekistan (for the USGS). Central Research Institute of Geological Prospecting for Base and Precious Meas (TsNIGRI), Moscow, p 19
    29. Large RR, Maslennikov VV, Robert F, Danyushevsky LV, Chang Z (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Econ Geol 102:1233-267 CrossRef
    30. Large RR, Danyushevsky L, Hollit C, Maslennikov V (2009) Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol 104:635-68 CrossRef
    31. Large RR, Bull SW, Maslennikov VV (2011) A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ Geol 106:331-58 CrossRef
    32. Mao J, Konopelko D, Seltmann R, Lehmann B, Chen W, Wang Y, Eklund O, Usubaliev T (2004) Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan. Econ Geol 99:1771-780 CrossRef
    33. Michard A, Albarède F, Michard G, Minster JF, Charlou JL (1983) Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 degrees north). Nature 303:795-97 CrossRef
    34. Mook WG (1968) Geochemistry of the stable carbon and oxygen isotopes of natural waters in the Netherlands. Unpublished Ph.D. Thesis, University of Groningen, The Netherlands
    35. Mushkin IV, Jaroslavsky RI (1974) Gold in alkali basalts and some types of inclusions from the depth of the Southern Tienshan. Geokhimija 7:1041-044 (in Russian)
    36. Poty B, Leroy J, Jachimowicz L (1976) Un nouvel appareil pour la mesure des temperatures sous le microscope: L’installation de microthermometrie Chaixmeca. Bull Soc Fr Géol Mineral Cristallogr 99:182-86
    37. Raiswell R, Plant J (1980) The incorporation of trace elements into pyrite during diagenesis of black shales, Yorkshire, England. Econ Geol 75:684-99 CrossRef
    38. Rumble D III, Hoering TC (1994) Analysis of oxygen and sulfur isotope ratios in oxide and sulfide minerals by spot heating with a carbon dioxide laser in a fluorine atmosphere. Acc Chem Res 27:237-41 CrossRef
    39. Sharp ZD (1990) A laser-based microanalytical method for the in-situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353-357 CrossRef
    40. Shashorin JN (1991) Geochemistry of gold in the process of formation of endogenous halos and natural concentrations (on example of Central Kyzylkum region). Extended abstract of Ph.D. Thesis (15 p), Tashkent
    41. Shayakubov TS (1998) Au-deposit Muruntau. FAN Acadamia of Sciences of Uzbekistan, Tashkent, 539 p
    42. Taylor HP Jr (1997) Oxygen and hydrogen isotope relationships in hdyrothermal mineral deposit. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. John Wiley & Sons, New York, pp 229-02
    43. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. UK, Blackwell, Oxford, 349 p
    44. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12-2 CrossRef
    45. Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223-231 CrossRef
    46. van Achterbergh E, Ryan CG, Griffin WL (2000) GLITTER: on-line interactive data reduction for the laser ablation ICP-MS microprobe. Ninth Annual V. M. Goldschmidt Conference, August 22-7, 1999, Cambridge, Massachusetts, abstract no. 7215
    47. Van den Kerkhof AM, Thiery R (2001) Carbonic inclusions. Lithos 55:49-8 CrossRef
    48. Vymazalová A, Pasava J, Koneev RI, Jukov AV, Khalmatov RA, Mun Y (2009) Geochemistry of platinum group elements in gold deposits in Uzbekistan. In Williams PJ (ed) Smart science for exploration and mining. Proceedings of the 10th Biennial SGA Meeting, Townsville, vol 2: 1003-005
    49. Wheat CG, Mottl MJ, Rudnicki M (2002) Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring. Geochim Cosmochim Acta 66:3693-705 CrossRef
    50. Wilde AR, Layer P, Mernagh T, Foster J (2001) The giant Muruntau gold deposit: geologic, geochronologic, and fluid inclusion constraints on ore genesis. Econ Geol 96:633-44 CrossRef
    51. Wohlgemuth-Ueberwasser CC, Ballhaus C, Berndt J, Stotternée Paliulionyte V, Meisel T (2007) Synthesis of PGE sulfide standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Contrib Mineral Petrol 154:607-17 CrossRef
    52. Yakubchuk A, Cole A, Seltmann R, Shatov V (2002) Tectonic setting, characteristics, and regional exploration criteria for gold mineralization in the Altaid orogenic collage: The Tien Shan Province as a key example In: Goldfarb RJ, Nielson RL (eds) Integrated methods for discovery: global exploration in the twenty-first century. Society of Economic Geologists, Littleton, Spec Publ 9: 177-02
    53. Yakubchuk A, Shatov VV, Kirwin D, Edwards A, Tomurtogoo O, Badarch G, Buryak VA (2005) Gold and base metal metallogeny of the central Asian orogenic supercollage. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume. Society of Economic Geologists, Littleton, pp 1035-068
    54. Yudovich YE, Ketris MP (1994) Trace elements in black shales. Nauka Publisher, Ekaterinburg, p 303 (in Russian )
    55. Zheng YF (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079-091 CrossRef
    56. Zonenshain LP, Kuzmin MI, Natapov LM (1990) Geology of the USSR: a plate tectonic synthesis. Am Geophys Union Geodyn Ser Monogr 21:242
    57. Zverev Yu, Kremenetsky A, Minzer E, Shatov V (1999) The Amantaytau–Daughyztau ore field. In: Shayakubov T, Islamov F, Kremenetsky A, Seltmann R (eds) Au, Ag, and Cu deposits of Uzbekistan. Excursion guidebook, International Field Conference of IGCP-373, Excursion B6 of the Joint SGA-IAGOD Symposium London/Tashkent: 27/28 August- September 1999, pp 17-5 (113 p.)
  • 作者单位:Jan Pasava (1)
    Hartwig Frimmel (2) (3)
    Anna Vymazalová (1)
    Petr Dobes (1)
    Alexandr V. Jukov (4)
    Rustam I. Koneev (4)

    1. Czech Geological Survey, Klárov 131/3, 118 21, Prague 1, Czech Republic
    2. Institute of Geography and Geology, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
    3. Department of Geological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
    4. National University of Uzbekistan, Vuzgorodok, 700174, Tashkent, Uzbekistan
  • ISSN:1432-1866
文摘
A lithogeochemical, mineral chemical, isotopic, and fluid inclusion study of barren, low-, and high-grade Au-mineralized samples from the shear zone-hosted Amantaytau gold deposit, Uzbekistan, shows that the local host rocks, Late Ordovician–Earlz Silurian carbonacous shales, are likely to have been an important source of Au, As, Ni, and S in the formation of the deposit. Syn-depositional pyrite in these shales contains on average 0.23?ppm Au, 1,083?ppm As, and 861?ppm Ni. The distribution of rare earth elements (REE) indicates a homogeneous source of light REE, whereas the heavy REE distribution reflects most likely primary variations in the sediments. The mineralized zone is marked by a positive Eu anomaly, which supports reducing conditions during the mineralization. A hydrothermal overprint by an aqueous–carbonic fluid is reflected in a high-grade Au-mineralized sample by δ13C values of ?3.0?-(V-PDB). The δ 34S values in pyrite (?.13 to +7.30?-CDT) from barren and mineralized samples are consistent with marine sulfate being the principal source of the ore sulfur. Assuming a formation temperature of between 300 and 400?°C for the main stage of mineralization, as indicated by the alteration mineral assemblage, the calculated δ 18Ofluid is between 9.5 and 13.4?-V-SMOW, which points at a metamorphic origin of the ore fluid.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700