Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production
详细信息    查看全文
  • 作者:Ning Zhang ; Yang Qu ; Kai Pan ; Guofeng Wang ; Yadong Li
  • 关键词:Mg1.2Ti1.8O5 ; MgTiO3 ; nanocrystals ; photocatalytic hydrogen production
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:726-734
  • 全文大小:3,625 KB
  • 参考文献:[1]Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRef
    [2]Xiao, X. L.; Wang, L.; Wang, D. S.; He, X. M.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.CrossRef
    [3]Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1–7.CrossRef
    [4]Li, X. W.; Cao, H. Q.; Yin, J. F. Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res. 2011, 4, 470–482.CrossRef
    [5]Lv, X. J.; Fu, W. F.; Chang, H. X.; Zhang, H.; Cheng, J. S.; Zhang, G. J.; Song, Y.; Hu, C. Y.; Li. J. H. Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals. J. Mater. Chem. 2012, 22, 1539–1546.CrossRef
    [6]Zhang, R. Y.; Shen, D. K.; Xu, M.; Feng, D.; Li, W.; Zheng, G. F.; Elzatahry, A. A.; Zhao, D. Y. Ordered macro-/mesoporous anatase films with high thermal stability and crystallinity for photoelectrocatalytic water-splitting. Adv. Energy Mater. 2014, 4, DOI: 10.1002/aenm.201301725.
    [7]Qu, Y.; Zhou, W.; Xie, Y.; Jiang, L.; Wang, J. Q.; Tian, G. H.; Ren, Z. Y.; Tian, C. G.; Fu, H. G. A novel phase-mixed MgTiO3–MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chem. Commun. 2013, 49, 8510–8512.CrossRef
    [8]Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728.CrossRef
    [9]Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175–183.CrossRef
    [10]Castelli, I. E.; Landis, D. D.; Thygesen, K. S.; Dahl, S.; Chorkendorff, I.; Jaramillo, T, F.; Jacobsen, K. W. New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy Environ. Sci. 2012, 5, 9034–9043.CrossRef
    [11]Bian, Z. F.; Tachikawa, T. T.; Zhang, P.; Fujitsuka, M.; Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 2014, 136, 458–465.CrossRef
    [12]Zhou, W.; Lin, L. J.; Wang, W. J.; Zhang, L. L.; Wu, Q.; Li, J. H.; Guo, L. Hierarchial mesoporous hematite with “electron-transport channels” and its improved performances in photocatalysis and lithium ion batteries. J. Phys. Chem. C, 2011, 115, 7126–7133.CrossRef
    [13]Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan, D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M. et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 2013, 6, 3007–3014.CrossRef
    [14]Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.CrossRef
    [15]Jung, M. J.; Nam, K. H.; Chung, Y. M.; Boo, J. H.; Han, J. G. The physiochemical properties of TiOxNy films with controlled oxygen partial pressure. Surf. Coat. Technol. 2003, 171, 71–74.CrossRef
    [16]Hou, Y. L.; Kondoh, H.; Ohta, T. Size-controlled synthesis and magnetic studies of monodisperse FePd nanoparticles. J. Nanosci. Nanotechnol. 2009, 9, 202–208.CrossRef
    [17]Ivanova, A.; Fattakhova-Rohlfing, D.; Kayaalp, B. E.; Rathouský, J.; Bein, T. Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. J. Am. Chem. Soc. 2014, 136, 5930–5937.CrossRef
    [18]Gu, D.; Li, W.; Wang, F.; Bongard, H.; Spliethoff, B.; Schmidt, W.; Weidenthaler, C.; Xia, Y. Y.; Zhao, D. Y.; Schüth, F. Controllable synthesis of mesoporous peapod-like Co3O4@Carbon nanotube arrays for high-performance lithiumion batteries. Angew. Chem., Int. Ed. 2015, 54, 7060–7064.CrossRef
    [19]Wang, H.; Gao, J.; Guo, T. Q.; Wang, R. M.; Guo, L.; Liu, Y.; Li, J. H. Facile synthesis of AgBr nanoplates with exposed {111} facets and enhanced photocatalytic properties. Chem. Commun. 2012, 48, 275–277.CrossRef
    [20]Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759.CrossRef
    [21]Zhou, H. L.; Qu, Y. Q.; Zeid, T.; Duan, X. F. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732–6743.CrossRef
    [22]Li, W.; Wu, Z. X.; Wang, J X.; Elzatahry, A. A.; Zhao, D. Y. A perspective on mesoporous TiO2 materials. Chem. Mater. 2014, 26, 287–298.CrossRef
    [23]Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.CrossRef
  • 作者单位:Ning Zhang (1)
    Yang Qu (1)
    Kai Pan (1)
    Guofeng Wang (1)
    Yadong Li (2)

    1. Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
    2. Department of Chemistry, Tsinghua University, Beijing, 100084, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals has proven to be challenging. Here, pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals were prepared. Furthermore, a new magnesium titanate, Mg1.2Ti1.8O5, was synthesized via a solution-based route for the first time. As hydrogen evolution photocatalysts, both pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals exhibit excellent hydrogen production efficiency. In comparison with pure MgTiO3 nanocrystals, the asprepared Mg1.2Ti1.8O5 nanocrystals exhibited four times as much photocatalytic hydrogen production activity, up to 40 μmol·h–1. Photoelectrochemical analysis, including linear sweep voltammetry, transient photocurrent measurement, electrochemical impedance spectroscopy, and construction of Mott-Schottky plots, demonstrated that the enhanced photocatalytic activity was attributed to the large surface area, fast photoelectron transfer, higher carrier density, and efficient charge separation of the Mg1.2Ti1.8O5 nanocrystals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700