Characterizing the photochemical degradation of aquatic humic substances from a dystrophic lake using excitation-emission matrix fluorescence spectroscopy and parallel factor analysis
详细信息    查看全文
文摘
Three-dimensional excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) were used to monitor composition and reactivity changes caused by the photochemical degradation of aquatic humic substances (AHS) from a dystrophic lake in Kushiro Wetland, Japan. AHS-rich lake water was exposed to three treatments in summer and winter 2014: radiation with the full solar wavelength range, radiation with the >320-nm solar wavelength range, and no solar radiation. Irradiation caused AHS-like peaks to shift to shorter wavelengths in the EEM contour plots, implying that AHS photodegradation caused the formation of lower-molecular-weight fractions or more simply structured components. Three components were identified from PARAFAC analyses: AHS-1 (excitation/emission wavelengths of maxima: <252 and 315 nm/426 nm), AHS-2 (360 and 261 nm/489 nm), and AHS-3 (276 nm/403 nm). These components had different photosensitivities. AHS-1 was most sensitive to full solar radiation, while AHS-2 was most sensitive to >320-nm radiation. More photodegradation of these components occurred in the summer than in the winter, indicating that photodegradation depended on light intensity. AHS-3 was photoresistant. The different characteristics of the components reflected the in situ dynamics of the components. The AHS-3 fluorescence intensity was positively correlated with the dissolved organic carbon concentration but the AHS-1 and AHS-2 fluorescence intensities were not. The EEM–PARAFAC method was found to be a good tool for tracing AHS-like materials in situ and in the laboratory.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700