Photonic and Semiconductor Materials Based on Cellulose Nanocrystals
详细信息    查看全文
  • 关键词:Cellulose ; Mesoporous ; Nanocrystals ; Optoelectronics ; Photonics ; Sensors ; Supramolecular
  • 刊名:Advances in Polymer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:271
  • 期:1
  • 页码:287-328
  • 全文大小:1,932 KB
  • 参考文献:1.Hamad WY, Hu TQ (2010) Structure-process-yield interactions in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402
    2.Kovacs T, Naish V, O’Conner B, Blaise C, Gagne F, Hall L, Trudeau V, Martel P (2010) An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 4(3):255–270CrossRef
    3.Bazhenov VA (1961) Piezoelectric properties of wood. Consultants Bureau, New York
    4.Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
    5.Frka-Petesic B, Jean B, Heux L (2014) First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. Europhys Lett 107(2):28006. doi:10.​1209/​0295-5075/​107/​28006 CrossRef
    6.Li L-S, Alivisatos AP (2003) Origin and scaling of the permanent dipole moment in CdSe nanorods. Phys Rev Lett 90:097402CrossRef
    7.Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870CrossRef
    8.Habibi Y, Heim T, Douillard R (2008) AC electric field-assisted assembly and alignment of cellulose nanocrystals. J Polym Sci B Polym Phys 46:1430–1436CrossRef
    9.Csoka L, Hoeger IC, Peralta P, Peszlen I, Rojas OJ (2011) Dielectrophoresis of cellulose nanocrystals and alignment in ultrathin films by electric field-assisted shear assembly. J Colloid Interface Sci 363:206–212CrossRef
    10.Vignolini V, Rudall PJ, Rowland AV, Reed A, Moyroud E, Faden RB, Baumberg JJ, Glover BJ, Steiner U (2012) Pointillist structural color in Pollia fruit. Proc Natl Acad Sci USA 109(39):15712–15715CrossRef
    11.Burresi M, Cortese L, Patteli L, Kolle M, Vukusic P, Wiersma DS, Steiner U, Vignolini S (2014) Bright-white beetle scales optimise multiple scattering of light. Sci Rep 4:6075. doi:10.​1038/​srep06075
    12.Wilts BD, Whitney HM, Glover BJ, Steiner U, Vignolini S (2014) Natural helicoidal structures: morphology, self-assembly and optical properties. Mater Today Proc 1S:177–185CrossRef
    13.Lee DW (1991) Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus. Nature 394:260–262CrossRef
    14.Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys 71:076401CrossRef
    15.Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6:S115–S132CrossRef
    16.Giese M, Blusch LK, Khan MK, Hamad WY, MacLachlan MJ (2014) Responsive mesoporous photonic cellulose films by supramolecular contemplating. Angew Chem Int Ed 53(34):8880–8884CrossRef
    17.Lemke CH, Dong RY, Michal CA, Hamad WY (2012) New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR. Cellulose 19:1619–1629CrossRef
    18.Chuang IS, Maciel GE (1992) 13C CP/MAS NMR study of the structural dependence of urea-formaldehyde resins on formaldehyde-to-urea molar ratios at different urea concentrations and pH values. Macromolecules 25:3204–3226CrossRef
    19.de Vries HI (1951) Rotary power and other optical properties of certain liquid crystals. Acta Crystallogr 4:219–226CrossRef
    20.Kelly JA, Shukaliak AM, Cheung C, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed 52(34):8912–8916CrossRef
    21.Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2013) Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. Sens Actuators B 176:692–697CrossRef
    22.Khan MK, Giese M, Yu M, Hamad WY, MacLachlan MJ (2013) Flexible mesoporous photonic resins with tunable chiral nematic structures. Angew Chem Int Ed 52(34):8921–8924CrossRef
    23.Schlesinger M, Giese M, Blusch LK, Hamad WY, MacLachlan MJ (2015) Chiral nematic cellulose–gold nanoparticle composites from mesoporous photonic cellulose. Chem Commun 51:530–533CrossRef
    24.Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 11(23):4686–4694CrossRef
    25.Khan MK, Bsoul A, Walus K, Hamad WY, MacLachlan MJ (2015) Photonic patterns printed in chiral nematic mesoporous resins. Angew Chem Int Ed. doi:10.​1002/​anie.​201410411
    26.Giese M, De Witt JC, Shopsowitz KE, Manning AP, Dong RY, Michal CA, Hamad WY, MacLachlan MJ (2013) Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. ACS Appl Mater Interfaces 5(15):6854–6859CrossRef
    27.Giese M, Khan MK, Yu M, Hamad WY, MacLachlan MJ (2013) Imprinting of photonic patters with novel thermosetting amino-formaldehyde-cellulose composites. ACS Macro Lett 2(9):818–821CrossRef
    28.Cheung CCY, Giese M, Kelly JA, Hamad WY, MacLachlan MJ (2013) Iridescent chiral nematic cellulose nanocrystals (CNCs)/polymer composites assembled in organic solvents. ACS Macro Lett 2(11):1016–1020CrossRef
    29.Page DH, El-Hosseiny F, Winkler K (1971) Behaviour of single wood fibres under axial tensile strain. Nature 229:252CrossRef
    30.Page DH, El-Hosseiny F, Winkler K, Lancaster APS (1977) Elastic modulus of single wood pulp fibers. TAPPI J 60(4):114
    31.Plaza N, Zelinka SL, Stone DS, Jakes JE (2013) Plant-based torsional actuator with memory. Smart Mater Struct 22, 072001 (7 pages)CrossRef
    32.Dumanli AG, Kamita G, Landman J, van der Kooij H, Glover BJ, Baumberg JJ, Steiner U, Vignolini S (2014) Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv Opt Mater 2:646–650CrossRef
    33.Dumanli AG, van der Kooij HM, Kamita G, Reisner E, Baumberg JJ, Steiner U, Vignolini S (2014) Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces 6:12302–12306CrossRef
    34.Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2012) Nanocrystalline cellulose for covert optical encryption. J Nanophotonics 6, 063516. doi:10.​1117/​1.​JNP.​ 6.​063516 CrossRef
    35.Khan MK, Hamad WY, MacLachlan MJ (2014) Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties. Adv Mater 26(15):2323–2328CrossRef
    36.Lee W-E, Jin Y-J, Park L-S, Kwak G (2012) Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure. Adv Mater 24:5604–5609CrossRef
    37.Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic – chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082CrossRef
    38.Geng Y, Almeida PL, Fernandes SN, Cheng C, Palffy-Muhoray P, Godinho MH (2013) A cellulose liquid crystal motor: a steam engine of the second kind. Sci Rep 3:1–4
    39.Islam MR, Li X, Smyth K, Serpe MJ (2013) Polymer-based muscle expansion and contraction. Angew Chem Int Ed 52:10330–10333CrossRef
    40.Asher S, Holtz J, Weissman J, Pan G (1998) Mesoscopically periodic photonic-crystal materials for linear and nonlinear optics and chemical sensing. MRS Bull 23:44–50
    41.von Freymann G, Kitaev V, Lotsch BV, Ozin GA (2013) Bottom-up assembly of photonic crystals. Chem Soc Rev 42:2528–2554CrossRef
    42.Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Ed 50:1492–1522CrossRef
    43.Tatsumi M, Teramoto Y, Nishio Y (2012) Polymer composite reinforced by locking-in liquid-crystalline assembly of cellulose nanocrystallites. Biomacromolecules 13:1584–1591CrossRef
    44.Kelly JA, Yu M, Hamad WY, MacLachlan MJ (2013) Large, crack-free freestanding films with chiral nematic structures. Adv Opt Mater 1(4):295–299CrossRef
    45.Ben-Moshe M, Alexeev VL, Asher SA (2006) Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal Chem 78:5149–5157CrossRef
    46.Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218CrossRef
    47.Capadona JR, van den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofiber templates. Nat Nanotechnol 2(12):765–769CrossRef
    48.Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374CrossRef
    49.Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409CrossRef
    50.Lin VS, Motesharei K, Dancil KP, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278:840–843CrossRef
    51.Choi SY, Mamak M, von Freymann G, Chopra N, Ozin GA (2006) Mesoporous bragg stack color tunable sensors. Nano Lett 6:2456–2461CrossRef
    52.Yamada Y, Nakamura T, Ishi M, Yano K (2006) Reversible control of light reflection of a colloidal crystal film fabricated from monodisperse mesoporous silica spheres. Langmuir 22:2444–2446CrossRef
    53.Petkovich ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hardand soft templating. Chem Soc Rev 42:3721–3739CrossRef
    54.Lee YS (2008) Self-assembly and nanotechnology: a force balance approach. Wiley, HobokenCrossRef
    55.Chandrasekhar S (1992) Liquid crystals, 2nd edn. Cambridge University Press, CambridgeCrossRef
    56.Friberg SE, Yang CC, Goubran G, Partch RE (1991) Ammonia microemulsions and ammonolysis of silicon tetrachloride. Langmuir 7:1103–1106CrossRef
    57.Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRef
    58.Thomas A, Antonietti M (2003) Silica nanocasting of simple cellulose derivatives: towards chiral pore systems with long-range order and chiral optical coatings. Adv Funct Mater 13:763–766CrossRef
    59.Wang W, Liu R, Liu W, Tan J, Liu W, Kang H, Huang Y (2010) Hierarchical mesoporous silica prepared from ethyl-cyanoethyl cellulose cholesteric liquid crystalline phase. J Mater Sci 45:5567–5573CrossRef
    60.Qi H, Roy X, Shopsowitz KE, Hui JKH, MacLachlan MJ (2010) Liquid-crystal templating in ammonia: a facile route to micro- and mesoporous metal nitride/carbon composites. Angew Chem Int Ed 49:9740–9743CrossRef
    61.Alonso B, Belamie E (2010) Chitin-silica nanocomposites by self-assembly. Angew Chem Int Ed 49:8201–8204CrossRef
    62.Belamie E, Boltoeva MY, Yang K, Cacciaguerra T, Alonso B (2011) Tunable hierarchical porosity from self-assembled chitin-silica nanocomposites. J Mater Chem 21:16997–17006CrossRef
    63.Nguyen TD, Shopsowitz KE, MacLachlan MJ (2013) Mesoporous silica and organosilica films templated by nanocrystalline chitin. Chem Eur J 19:15148–15154CrossRef
    64.Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol-gel mineralization of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699CrossRef
    65.Shin Y, Exarhos GJ (2007) Template synthesis of porous titania using cellulose nanocrystals. Mater Lett 61:2594–2597CrossRef
    66.Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–425CrossRef
    67.Shopsowitz KE, Kelly JA, Hamad WY, MacLachlan MJ (2013) Biopolymer template glass with a twist: controlling the chirality, porosity and photonic properties of silica with cellulose nanocrystals. Adv Funct Mater 24(3):327–338CrossRef
    68.Shopsowitz KE, Hamad WY, MacLachlan MJ (2012) Flexible and iridescent chiral nematic mesoporous organosilica films. J Am Chem Soc 134(2):867–870CrossRef
    69.Kelly JA, Shopsowitz KE, Ahn J, Hamad WY, MacLachlan MJ (2012) Chiral nematic stained glass: controlling the optical properties of nanocrystalline cellulose-templated materials. Langmuir 28(50):17256–17262CrossRef
    70.Kelly JA, Kyle Manchee CP, Cheng S, Ahn JM, Shopsowitz KE, Hamad WY, MacLachlan MJ (2014) Evaluation of form birefringence in chiral nematic mesoporous materials. J Mater Chem C 2:5093–5097CrossRef
    71.Kelly JA, Giese M, Shopsowitz KE, Hamad WY, MacLachlan MJ (2014) The development of chiral nematic mesoporous materials. Acc Chem Res 47(4):1088–1096CrossRef
    72.Asefa A, MacLachlan MJ, Coombs N, Ozin GA (1999) Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402:867–871
    73.Mizoshita N, Ikai M, Tani T, Inagaki S (2009) Hole-transporting periodic mesostructured organosilica. J Am Chem Soc 131:14225–14227CrossRef
    74.Haffer S, Tiemann M, Fröba M (2010) Periodic mesoporous organosilica (PMO) materials with uniform spherical core-shell structure. Chem Eur J 16:10447–10452CrossRef
    75.Wang H, Roman M (2011) Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-macroion complexes for drug delivery applications. Biomacromolecules 12:1585–1593CrossRef
    76.Lim MH, Stein A (1999) Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials. Chem Mater 11:3285–3295CrossRef
    77.Lu Y, Fan H, Doke N, Loy DA, Assink RA, LaVan DA, Brinker CJ (2000) Evaporation-induced self-assembly of hybrid bridged silsesquioxane film and particulate mesophases with integral organic functionality. J Am Chem Soc 122:5258–5261CrossRef
    78.Inagaki S, Guan S, Ohsuna T, Terasaki O (2002) An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416:304–307CrossRef
    79.Terpstra AS, Shopsowitz KE, Gregory CF, Manning AP, Michal CA, Hamad WY, Yang J, MacLachlan MJ (2013) Helium ion microscopy: a new tool for imaging novel mesoporous silica and organosilica materials. Chem Commun 49(16):1645–1647CrossRef
    80.Robbie K, Broer DJ, Brett MJ (1999) Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature 399:764–766CrossRef
    81.Burgess IB, Koay N, Raymond KP, Kolle M, Loncar M, Aizenberg J (2012) Wettingin color: calorimentric differentiation of organic liquids with high selectivity. ACS Nano 6:1427–1437CrossRef
    82.Bragg WL, Pippard AB (1953) The form birefringence of macromolecules. Acta Crystallogr 6:865–867CrossRef
    83.Anderson MA, Tinsley-Bown A, Allcock P, Perkins EA, Snow P, Hollings M, Smith RG, Reeves C, Squirrell DJ, Nicklin S, Cox TI (2003) Sensitivity of the optical properties of porous silica layers to the refractive index of liquid in the pores. Phys Status Solidi A 197:528–533CrossRef
    84.Lu A, Scüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805CrossRef
    85.Lu AH, Zhao D, Wan Y (2009) Nanocasting: a versatile strategy for creating nanostructured porous materials. The Royal Society of Chemistry, Cambridge
    86.Zhang R, Elzatahry AA, Al-Deyab SS, Zhao D (2012) Mesoporous titania: from synthesis to application. Nano Today 7:344–366CrossRef
    87.Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic order. Angew Chem Int Ed 51(28):6886–6890CrossRef
    88.Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452CrossRef
    89.Gautier C, Buergi T (2009) Chiral gold nanoparticles. ChemPhysChem 10:483–492CrossRef
    90.Govorov AO, Gun’ko YK, Slocik JM, Gerard VA, Fan Z, Naik RR (2011) Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J Mater Chem 21:16806–16818CrossRef
    91.Qi H, Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J Am Chem Soc 133(11):3728–3731CrossRef
    92.Mehr SHM, Giese M, Qi H, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Poly(p-phenylenevinylene) in chiral nematic mesoporous organosilica. Langmuir 29(40):12579–12584CrossRef
    93.Akagi K, Piao G, Kaneko S, Sakamaki K, Shirakawa H, Kyotani M (1998) Helical polyacetylene synthesized with a chiral nematic reaction field. Science 282:1683–1686CrossRef
    94.Ruda H, Matsuura N (2007) Nano-engineered tunable photonic crystals in the near-IR and visible electromagnetic spectrum. Springer, Boston, pp 997–1019
    95.Chandrasekhar P (1999) Conducting polymers, fundamentals and applications: a practical approach. Kluwer Academic, Boston, pp 434–435CrossRef
    96.Skotheim TG, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New York, pp 883–1007
    97.Liao Y, Zhang C, Zhang Y, Strong V, Tang J, Li XG, K-Zadeh K, Hoek EMV, Wang KL, Kaner RB (2011) Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. Nano Lett 11:954–959CrossRef
    98.Lin J, Tang Q, Wu J, Sun H (2008) Synthesis, characterization and properties of polyaniline/expanded vermiculite intercalated nanocomposite. Sci Technol Adv Mater 9(2), 025010CrossRef
    99.Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300–6306CrossRef
    100.van der Berg O, Schroeter M, Capadona JR, Weder C (2007) Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J Mater Chem 17:2746–2753CrossRef
    101.Tkalya E, Ghislandi M, Thielemans W, van der Schoot P, de With G, Koning C (2013) Cellulose nanowhiskers templating in conductive polymer nanocomposites reduces electrical percolation threshold 5-fold. ACS Marco Lett 2:157–163CrossRef
    102.Fan J, Shao W, Xu G, Cui XT, Luo X (2014) Preparation and electrochemical catalytic application of nanocrystalline cellulose doped poly(3,4-ethylenedioxythiophene) conducting polymer nanocomposites. RSC Adv 4:24328–24333CrossRef
    103.Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8457CrossRef
    104.Sakakibara K, Rosenau T (2012) Polythiophene-cellulose composites: synthesis, optical properties and homogeneous oxidative co-polymerization. Holzforschung 66:9–19CrossRef
    105.Wang H, Bian L, Zhou P, Jian T, Tang W (2013) Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J Mater Chem A 1:578–584CrossRef
    106.Mattoso LHC, Medeiros ES, Baker DA, Avloni J, Wood DF, Orts W (2009) Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline. J Nanosci Nanotechnol 9:2917–2922CrossRef
    107.Byoung-Ho L, Hyun-Joong K, Han-Seung Y (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75–80CrossRef
    108.Nyström G, Mihranyan A, Razaq A, Lindström T, Neyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182CrossRef
    109.Marins JA, Soares BG, Dahmouche K, Ribeiro SJL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18:1285–1294CrossRef
    110.Müller D, Mandelli JS, Marins JA, Soares BG, Porto LM, Rambo CR, Barra GMO (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654CrossRef
    111.Liew SY, Shariki S, Vuorema A, Walsh DA, Marken F, Thielmans W (2012) Cellulose nanowhiskers in elechtrochamical applications. In: Liebner F et al (eds) Functional materials from renewable sources, ACS symposium series. American Chemical Society, Washington DC, pp 75–106. ISBN 9-78084122789-7CrossRef
    112.Mihranyan A, Esmaeili M, Razaq A, Alexeichlik D, Lindtröm T (2012) Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. J Mater Sci 47:4463–4472CrossRef
    113.Hamad WY, Atifi S (2015) Flexible, semiconducting nanocomposite materials based on nanocrystalline cellulose and polyaniline. CA Patent No. 2,831,147
    114.Wang D-W, Li F, Zhao J, Ren W, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high performance flexible electrod. ACS Nano 3(7):1745–1752CrossRef
    115.Hamad WY, Atifi S, Stead N (2013) Cellulose nanocrystal (CNC) films and CNCs-based polymer films using electrochemical techniques. USPTO Application 61/819,905 filed on May 6, 2013
    116.Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094CrossRef
    117.Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef
    118.Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew Chem Int Ed 123(46):11183–11187CrossRef
    119.Nguyen TD, Hamad WY, MacLachlan MJ (2014) CdS quantum dots encapsulated in chiral nematic mesoporous silica: new iridescent and luminescent materials. Adv Funct Mater 24(6):777–783CrossRef
  • 作者单位:Wadood Y. Hamad (20)

    20. Cellulosic Biomaterials Group, FPInnovations, Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
  • 丛书名:Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials
  • ISBN:978-3-319-26015-0
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-5030
文摘
Cellulose nanocrystals (CNCs) are renewable, sustainable nanomaterials, typically produced by strong sulfuric acid hydrolysis of lignocellulosic biomass. CNCs can self-assemble in aqueous, and other, suspensions at a critical concentration, or under evaporation, into chiral nematic organization to exhibit anisotropic structural color. The degree of sulfation is critical for producing both stable colloidal suspensions and iridescent films by evaporation-induced self-assembly. CNCs also possess electromagnetic and piezoelectric properties, as well as active surface groups that render them suitable for tailored functionalization. This chapter presents a framework of how CNCs can be used to (i) template in/organic mesoporous photonic and electronic materials and structures, and (ii) develop sustainable, flexible electronics. Using a novel supramolecular co-templating approach, the first example of functional, mesoporous, photonic cellulose films, or nanopaper, has been produced. The CNC-templating approach is a scalable, effective tool for imparting long-range chirality in a number of distinct materials (polymer, silica, metal oxides, carbon) with promising applications in, for example, optoelectronics, biosensors, actuators, functional membranes, 3D printing, and tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700