Stretchable photonic crystal design
详细信息    查看全文
  • 作者:Anas Othman ; David Yevick
  • 关键词:Photonic crystals ; Wavelength filtering devices ; Nanophotonics ; Three ; dimensional fabrication
  • 刊名:Optical and Quantum Electronics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:48
  • 期:3
  • 全文大小:877 KB
  • 参考文献:Augustin, M., Iliew, R., Etrich, C., Setzpfandt, F., Fuchs, H.-J., Kley, E.-B., Nolte, S., Pertsch, T., Lederer, F., Tnnermann, A.: Dispersion properties of photonic crystal waveguides with a low in-plane index contrast. New J. Phys. 8, 210 (2006)ADS CrossRef
    Bienstman, P., Assefa, S., Johnson, S.G., Joannopoulos, J.D., Petrich, G.S., Kolodziejski, L.A.: Taper structures for coupling into photonic crystal slab waveguides. J. Opt. Soc. Am. B 20(9), 1817–1821 (2003)ADS CrossRef
    Eichenfield, M., Camacho, R., Chan, J., Vahala, K.J., Painter, O.: A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009)ADS CrossRef
    Gan, L., Li, Z.: Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices. Front. Optoelec. 5(1), 21–40 (2012)CrossRef
    Han, M.G., Shin, C.G., Jeon, S.-J., Shim, H., Heo, C.-J., Jin, H., Kim, J.W., Lee, S.: Full colortunable photonic crystal from crystalline colloidal arrays with anengineered photonic stop-band. Adv. Mater. 24(48), 6438–6444 (2012)CrossRef
    Ibanescu, M., Johnson, S.G., Soljacic, M., Joannopoulos, J.D., Fink, Y., Weisberg, O., Engeness, T.D., Jacobs, S.A., Skorobogatiy, M.: Analysis of mode structure in hollow dielectric waveguide fibers. Phys. Rev. E 67, 046608 (2003)ADS CrossRef
    Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals, Molding the flow of light, Princeton University Press (chapters 5 and 8) (1995)
    Johnson, S.G., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62, 8212–8221 (2000)ADS CrossRef
    Johnson, S.G., Ibanescu, M., Skorobogatiy, M., Weisberg, O., Engeness, T.D., Soljacic, M., Jacobs, S.A., Joannopoulos, J.D., Fink, Y.: Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt. Express 9(13), 748–779 (2001)ADS CrossRef
    Lau, W.T., Fan, S.: Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs. Appl. Phys. Lett. 81, 3915–3917 (2002)ADS CrossRef
    Lu, Z., Yin, Y.: Colloidal nanoparticle clusters: functional materials by design. Chem. Soc. Rev 41, 6874–6887 (2012)CrossRef
    Mendez, A., Morse, T. (eds.): Specialty Optical Fibers Handbook. Academic Press, New York (2000)
    Notomi, M., Yamada, K., Shinya, A., Takahashi, J., Takahashi, C., Yokohama, I.: Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87(25), 253902 (2001)ADS CrossRef
    Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25(1), 25–27 (2000)ADS CrossRef
    Song, B.-S., Noda, S., Asano, T., Akahane, Y.: Ultra- high-Q photonic double-heterostructure nanocavity. Nat. Mater. 4(3), 207–210 (2005)ADS CrossRef
    Sugimoto, Y., Tanaka, Y., Ikeda, N., Nakamura, Y., Asakawa, K.: Low propagation loss of 0.76 dB/mm in GaAs-based single-line- defect two-dimensional photonic crystal slab waveguides up to 1 cm in length. Opt. Express 12(6), 1090–1096 (2004)ADS CrossRef
    Vignolini, S., Riboli, F., Intonti, F., Belotti, M., Gurioli, M., Chen, Y., Colocci, M., Andreani, L.C., Wiersma, D.S.: Local nanofluidic light sources in silicon photonic crystal microcavities. Phys. Rev. E 78, 045603 (R) (2008)
    Wang, H., Zhang, K.-Q.: Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 13, 4192–4213 (2013)CrossRef
    Wang, K.X., Yu, Z., Liu, V., Raman, A., Cui, Y., Fan, S.: Light trapping in photonic crystals. Energy Environ. Sci. 7, 2725–2738 (2014)CrossRef
    Watts, M.R., Johnson, S.G., Haus, H.A., Joannopoulos, J.D.: Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap. Opt. Lett. 27(20), 1785–1787 (2002)ADS CrossRef
    Yang, D., Tian, H., Ji, Y.: Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Opt. Express 19, 20023–20034 (2011)ADS CrossRef
    Yu, C.L., Kim, H., de Leon, N., Frank, I.W., Robinson, J.T., McCutcheon, M., Liu, M., Lukin, M.D., Loncar, M., Park, H.: Stretchable photonic crystal cavity with wide frequency tunability. Nano Lett. 13(1), 248–252 (2013)ADS CrossRef
    Zhu, X., Zhang, Y., Chandra, D., Cheng, S.-C., Kikkawa, J.M., Yang, S.: Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly(dimethylsiloxane) membranes under elastic deformation. Appl. Phys. Lett. 93(16), 161911 (2008)ADS CrossRef
  • 作者单位:Anas Othman (1) (2)
    David Yevick (2)

    1. Department of Physics, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
    2. Department of Physics, Faculty of Science, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
  • 刊物主题:Optics, Optoelectronics, Plasmonics and Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks;
  • 出版者:Springer US
  • ISSN:1572-817X
文摘
We compare numerically two implementations of stretchable photonic crystals embedded in elastic polymers. Our analysis, which classifies the bandgaps according to two simply determined parameters, indicates that such structures exhibit bandgaps that can be readily adjusted by straining the polymer. These properties suggest numerous potential applications such as flexible and tunable waveguiding structures, wavelength switches and resonators.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700