Copper phytoextraction by Salvinia cucullata: biochemical and morphological study
详细信息    查看全文
  • 作者:Suchismita Das ; Sunayana Goswami
  • 关键词:Hyperaccumulator ; Metal ; Antioxidant enzymes ; Pigments ; SEM ; EDX
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:24
  • 期:2
  • 页码:1363-1371
  • 全文大小:
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water M
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1614-7499
  • 卷排序:24
文摘
The present study investigated the effect of copper on photosynthesis, antioxidant potential, and anatomical response of aquatic fern, Salvinia cucullata, with a view to ascertain its phytoremediation potential. Plants were exposed in hydroponics for 21 days to different Cu concentrations (10, 15, 20, and 30 mg/L). Significant declines in chlorophyll, carotenoids, and soluble proteins, as a function of Cu proportion were observed. Lipid peroxidation was also evident, which implied reactive oxygen species (ROS) generation. However, both root and leaf tissues responded remarkably to the ROS produced, by inducing superoxide dismutase (1.6–6.5 times), catalase (1.5–5.4 times), guaicol peroxidase (1.5–7.2 times), and ascorbyl peroxidase (1.3–4.7 times) over the control. The plant showed best phytoremedial activity within Cu range of 10–15 mg/L, with maximum accumulation of 2956 ± 82.6 μg/g dw., at 15 mg Cu/L and showed efficient root to shoot translocation (translocation factor, TF > 1) at this range, which is the stipulated minimum requirement to be a hyperaccumulator. The capacity of metal extraction from environment to leaf (extraction coefficient, EC) was also high (EC = 73–197). However, at higher doses (20–30 mg/L), the plant resorted to an exclusion strategy, whereby, more metal accumulation was observed in root than in leaf. The plant conferred suitable remediation attributes by showing minimal root and leaf anatomical damages along with high Ca peaks in both the tissues, and rapid leaf stomatal closure, all of which probably helped in the Cu induced stress mitigation. Due to its widespread availability, fast growth, ability to grow in myriads of polluted environment, and having hardy physiology, this plant can be suggested for use as a suitable Cu phytoremediator.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700