Direct Synthesis of Co-doped Graphene on Dielectric Substrates Using Solid Carbon Sources
详细信息    查看全文
  • 作者:Qi Wang ; Pingping Zhang ; Qiqi Zhuo ; Xiaoxin Lv ; Jiwei Wang ; Xuhui Sun
  • 关键词:Graphene ; Solid carbon sources ; Transfer ; free ; Doping and co ; doping
  • 刊名:Nano-Micro Letters
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:7
  • 期:4
  • 页码:368-373
  • 全文大小:1,903 KB
  • 参考文献:1.C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(18), 385鈥?88 (2008). doi:10.鈥?126/鈥媠cience.鈥?157996 CrossRef
    2.X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491鈥?95 (2008). doi:10.鈥?038/鈥媙nano.鈥?008.鈥?99 CrossRef
    3.K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706鈥?10 (2009). doi:10.鈥?038/鈥媙ature07719 CrossRef
    4.J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken et al., Two-dimensional phonon transport in supported graphene. Science 328, 213鈥?16 (2010). doi:10.鈥?126/鈥媠cience.鈥?184014 CrossRef
    5.X. Sun, L. Qiao, X. Wang, A novel immunosensor based on au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface. Nano-Micro Lett. 5(3), 191鈥?01 (2013). doi:10.鈥?101/鈥媙ml.鈥媣5i3 CrossRef
    6.R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). doi:10.鈥?126/鈥媠cience.鈥?156965 CrossRef
    7.A.K. Geim, Graphene: status and prospects. Science 324, 1530鈥?534 (2009). doi:10.鈥?126/鈥媠cience.鈥?158877 CrossRef
    8.Yu. Lili, Wu Hui, Wu Beina, Ziyi Wang, Hongmei Cao, Fu Congying, Nengqin Jia, Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano-Micro Lett. 6(3), 258鈥?67 (2014). doi:10.鈥?101/鈥媙ml140028a CrossRef
    9.Y. Xue, B. Wu, L. Jiang, Y. Guo, L. Huang et al., Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 134(27), 11060鈥?1063 (2012). doi:10.鈥?021/鈥媕a302483t CrossRef
    10.W. Haixia, Q. Liu, S. Guo, Composites of graphene and LiFePO4 as cathode materials for lithium ion battery: a mini-review. Nano-Micro Lett. 6(4), 316鈥?26 (2014). doi:10.鈥?007/鈥媠40820-014-0004-6 CrossRef
    11.L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321鈥?326 (2010). doi:10.鈥?021/鈥媙n901850u CrossRef
    12.Z. Yang, Z. Yao, G.F. Li, G.Y. Fang, H.G. Nie, Z. Liu, X.M. Zhou, X.A. Chen, S.M. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1), 205鈥?11 (2011). doi:10.鈥?021/鈥媙n203393d CrossRef
    13.A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337鈥?342 (2010). doi:10.鈥?021/鈥媙n101926g CrossRef
    14.A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30鈥?5 (2009). doi:10.鈥?021/鈥媙l801827v CrossRef
    15.X.S. Lia, W.W. Caia, J. Ana, S. Kimb, J. Nahb et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312鈥?314 (2009). doi:10.鈥?126/鈥媠cience.鈥?171245 CrossRef
    16.Z.Q. Luo, S.H. Lim, Z.Q. Tian, J.Z. Shang, L.F. Lai, B. MacDonald, C. Fu, Z.X. Shen, T. Yu, J.Y. Lin, Pyridinic N-doped graphene: synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 21, 8038鈥?044 (2011). doi:10.鈥?039/鈥媍1jm10845j CrossRef
    17.Z. Jin, J. Yao, C. Kittrell, J.M. Tour, Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5(5), 4112鈥?117 (2011). doi:10.鈥?021/鈥媙n200766e CrossRef
    18.Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources. Nature 468, 549鈥?52 (2010). doi:10.鈥?038/鈥媙ature09579 CrossRef
    19.L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin et al., Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947鈥?50 (2012). doi:10.鈥?126/鈥媠cience.鈥?218461 CrossRef
    20.S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574鈥?78 (2010). doi:10.鈥?038/鈥媙nano.鈥?010.鈥?32 CrossRef
    21.Q. Zhuo, Q. Wang, Y.P. Zhang, D. Zhang, Q.L. Li et al., Transfer-free synthesis of doped and patterned graphene films. ACS Nano 9, 594鈥?01 (2015). doi:10.鈥?021/鈥媙n505913v CrossRef
    22.D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238 (2007). doi:10.鈥?021/鈥媙l061702a CrossRef
    23.A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). doi:10.鈥?103/鈥婸hysRevLett.鈥?7.鈥?87401 CrossRef
    24.R. Stine, W.K. Lee, K.E. Whitener Jr, J.T. Robinson, P.E. Sheehan, Chemical stability of graphene fluoride produced by exposure to XeF2. Nano Lett. 13, 4311鈥?316 (2013). doi:10.鈥?021/鈥媙l4021039 CrossRef
  • 作者单位:Qi Wang (1)
    Pingping Zhang (1)
    Qiqi Zhuo (1)
    Xiaoxin Lv (1)
    Jiwei Wang (1)
    Xuhui Sun (1)

    1. Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu, People鈥檚 Republic of China
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
Direct synthesis of high-quality doped graphene on dielectric substrates without transfer is highly desired for simplified device processing in electronic applications. However, graphene synthesis directly on substrates suitable for device applications, though highly demanded, remains unattainable and challenging. Here, a simple and transfer-free synthesis of high-quality doped graphene on the dielectric substrate has been developed using a thin Cu layer as the top catalyst and polycyclic aromatic hydrocarbons as both carbon precursors and doping sources. N-doped and N, F-co-doped graphene have been achieved using TPB and F16CuPc as solid carbon sources, respectively. The growth conditions were systematically optimized and the as-grown doped graphene were well characterized. The growth strategy provides a controllable transfer-free route for high-quality doped graphene synthesis, which will facilitate the practical applications of graphene. Keywords Graphene Solid carbon sources Transfer-free Doping and co-doping

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700