Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients
详细信息    查看全文
  • 作者:Xiao-Yong Zhan ; Chao-Hui Hu ; Qing-Yi Zhu
  • 关键词:Legionella ; Virulence genes ; Distribution pattern ; Virulence evolution
  • 刊名:Archives of Microbiology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:198
  • 期:3
  • 页码:241-250
  • 全文大小:1,100 KB
  • 参考文献:Al-Quadan T, Price CT, Abu Kwaik Y (2012) Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella. Trends Microbiol 20:299–306. doi:10.​1016/​j.​tim.​2012.​03.​005 CrossRef PubMed PubMedCentral
    Altman E, Segal G (2008) The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol 190:1985–1996. doi:10.​1128/​JB.​01493-07 CrossRef PubMed PubMedCentral
    Aurell H et al (2005) Clinical and environmental isolates of Legionella pneumophila serogroup 1 cannot be distinguished by sequence analysis of two surface protein genes and three housekeeping genes. Appl Environ Microbiol 71:282–289. doi:10.​1128/​AEM.​71.​1.​282-289.​2005 CrossRef PubMed PubMedCentral
    Bandyopadhyay P, Xiao H, Coleman HA, Price-Whelan A, Steinman HM (2004) Icm/dot-independent entry of Legionella pneumophila into amoeba and macrophage hosts. Infect Immun 72:4541–4551. doi:10.​1128/​IAI.​72.​8.​4541-4551.​2004 CrossRef PubMed PubMedCentral
    Bandyopadhyay P, Liu S, Gabbai CB, Venitelli Z, Steinman HM (2007) Environmental mimics and the Lvh type IVA secretion system contribute to virulence-related phenotypes of Legionella pneumophila. Infect Immun 75:723–735. doi:10.​1128/​IAI.​00956-06 CrossRef PubMed PubMedCentral
    Brassinga AK et al (2003) A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J Bacteriol 185:4630–4637CrossRef PubMed PubMedCentral
    Brown SP, Cornforth DM, Mideo N (2012) Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 20:336–342. doi:10.​1016/​j.​tim.​2012.​04.​005 CrossRef PubMed PubMedCentral
    Cazalet C et al (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36:1165–1173. doi:10.​1038/​ng1447 CrossRef PubMed
    Cazalet C et al (2010) Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet 6:e1000851. doi:10.​1371/​journal.​pgen.​1000851 CrossRef PubMed PubMedCentral
    Cianciotto NP (2001) Pathogenicity of Legionella pneumophila. Int J Med Microbiol 291:331–343. doi:10.​1078/​1438-4221-00139 CrossRef PubMed
    Cirillo JD, Cirillo SL, Yan L, Bermudez LE, Falkow S, Tompkins LS (1999) Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila. Infect Immun 67:4427–4434PubMed PubMedCentral
    D’Auria G, Jimenez-Hernandez N, Peris-Bondia F, Moya A, Latorre A (2010) Legionella pneumophila pangenome reveals strain-specific virulence factors. BMC Genom 11:181. doi:10.​1186/​1471-2164-11-181 CrossRef
    Doleans A et al (2004) Clinical and environmental distributions of Legionella strains in France are different. J Clin Microbiol 42:458–460CrossRef PubMed PubMedCentral
    Escoll P, Rolando M, Gomez-Valero L, Buchrieser C (2013) From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts. Curr Top Microbiol Immunol 376:1–34. doi:10.​1007/​82_​2013_​351 PubMed
    Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15:506–526CrossRef PubMed PubMedCentral
    Fliermans CB, Cherry WB, Orrison LH, Smith SJ, Tison DL, Pope DH (1981) Ecological distribution of Legionella pneumophila. Appl Environ Microbiol 41:9–16PubMed PubMedCentral
    Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C (2011a) Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host–pathogen interactions. Front Microbiol 2:208. doi:10.​3389/​fmicb.​2011.​00208 CrossRef PubMed PubMedCentral
    Gomez-Valero L et al (2011b) Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes. BMC Genom 12:536. doi:10.​1186/​1471-2164-12-536 CrossRef
    Gomez-Valero L et al (2014) Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires’ disease. Genome Biol 15:505. doi:10.​1186/​PREACCEPT-1086350395137407​ PubMed PubMedCentral
    Hilbi H, Segal G, Shuman HA (2001) Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol Microbiol 42:603–617CrossRef PubMed
    Ko KS, Lee HK, Park MY, Kook YH (2003) Mosaic structure of pathogenicity islands in Legionella pneumophila. J Mol Evol 57:63–72. doi:10.​1007/​s00239-002-2452-8 CrossRef PubMed
    Lau HY, Ashbolt NJ (2009) The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol 107:368–378. doi:10.​1111/​j.​1365-2672.​2009.​04208.​x CrossRef PubMed
    Luo ZQ (2011) Targeting one of its own: expanding roles of substrates of the Legionella pneumophila Dot/Icm type IV secretion system. Front Microbiol 2:31. doi:10.​3389/​fmicb.​2011.​00031 PubMed PubMedCentral
    Moliner C, Raoult D, Fournier PE (2009) Evidence of horizontal gene transfer between amoeba and bacteria. Clin Microbiol Infect 15:178–180CrossRef PubMed
    Newton HJ, Ang DK, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298. doi:10.​1128/​CMR.​00052-09 CrossRef PubMed PubMedCentral
    Pope CD, O’Connell W, Cianciotto NP (1996) Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection. Infect Immun 64:629–636PubMed PubMedCentral
    Qin T et al (2014) Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China. Appl Environ Microbiol 80:2150–2157. doi:10.​1128/​AEM.​03844-13 CrossRef PubMed PubMedCentral
    Richards AM, Von Dwingelo JE, Price CT, Abu Kwaik Y (2013) Cellular microbiology and molecular ecology of Legionella–amoeba interaction. Virulence 4:307–314. doi:10.​4161/​viru.​24290 CrossRef PubMed PubMedCentral
    Storey MV, Winiecka-Krusnell J, Ashbolt NJ, Stenstrom TA (2004) The efficacy of heat and chlorine treatment against thermotolerant Acanthamoebae and Legionellae. Scand J Infect Dis 36:656–662. doi:10.​1080/​0036554041002078​5 CrossRef PubMed
    Viswanathan VK, Edelstein PH, Pope CD, Cianciotto NP (2000) The Legionella pneumophila iraAB locus is required for iron assimilation, intracellular infection, and virulence. Infect Immun 68:1069–1079CrossRef PubMed PubMedCentral
    Viswanathan VK et al (2002) The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun 70:1842–1852CrossRef PubMed PubMedCentral
    Yu VL et al (2002) Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 186:127–128. doi:10.​1086/​341087 CrossRef PubMed
    Zink SD, Pedersen L, Cianciotto NP, Abu-Kwaik Y (2002) The Dot/Icm type IV secretion system of Legionella pneumophila is essential for the induction of apoptosis in human macrophages. Infect Immun 70:1657–1663CrossRef PubMed PubMedCentral
  • 作者单位:Xiao-Yong Zhan (1) (2)
    Chao-Hui Hu (1) (2)
    Qing-Yi Zhu (1) (2)

    1. Guangzhou KingMed Center for Clinical Laboratory, No.10, Luoxuan 3 Road, Guangzhou International Bio-island, Guangzhou, 510300, China
    2. KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Microbial Ecology
    Biochemistry
    Cell Biology
    Biotechnology
    Ecology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-072X
文摘
Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700