Estimation of aerosol optical depth at different wavelengths by multiple regression method
详细信息    查看全文
  • 作者:Fuyi Tan ; Hwee San Lim ; Khiruddin Abdullah…
  • 关键词:Aerosol ; Aerosol optical depth (AOD) ; Air pollution index (API) ; Relative humidity ; Visibility (Vis) ; Back ; trajectory ; CALIPSO ; Southeast Asia
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:3
  • 页码:2735-2748
  • 全文大小:2,574 KB
  • 参考文献:Ångström A (1929) On the atmospheric transmission of sun radiation and on dust in the air. Geogr Ann 11(2):156–166
    Bäumer D, Vogel B, Versick S, Rinke R, Möhler O, Schnaiter M (2008) Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over southwest Germany. Atmos Environ 42(5):989–998. doi:10.​1016/​j.​atmosenv.​2007.​10.​017 CrossRef
    Bedrina T, Parodi A, Quarati A, Clematis A (2012) ICT approaches to integrating institutional and non-institutional data services for better understanding of hydro-meteorological phenomena. Nat Hazards Earth Syst Sci 12(6):1961–1968. doi:10.​5194/​nhess-12-1961-2012 CrossRef
    Cadle RD, Grams GW (1975) Stratospheric aerosol particles and their optical properties. Rev Geophys Space Phys 13(4):475–501CrossRef
    Campbell JR, Reid JS, Westphal DL, Zhang J, Tackett JL, Chew BN, Welton EJ, Shimizu A, Sugimoto N, Aoki K, Winker DM (2013) Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007–2009 view from CALIOP. Atmos Res 122(0):520–543. doi:10.​1016/​j.​atmosres.​2012.​05.​007 CrossRef
    DOE (1997) A guide to air pollutant index in Malaysia (API). 3rd edn., Kuala Lumpur, Malaysia
    DOE (2010) Malaysia environment quality report 2010 (chapter 1: Air quality). Department of Environment, Petaling Jaya
    Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res D Atmos 104(D24):31333–31349CrossRef
    Ganguly D, Ginoux P, Ramaswamy V, Dubovik O, Welton J, Reid EA, Holben BN (2009) Inferring the composition and concentration of aerosols by combining AERONET and MPLNET data: comparison with other measurements and utilization to evaluate GCM output. J Geophys Res D Atmos 114(16):114. doi:10.​1029/​2002JD003179
    Hand JL, Kreidenweis SM, Slusser J, Scott G (2004) Comparisons of aerosol optical properties derived from sun photometry to estimates inferred from surface measurements in Big Bend National Park, Texas. Atmos Environ 38:6813–6821. doi:10.​1016/​j.​atmosenv.​2004.​09.​004 CrossRef
    Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res Atmos 102(D6):6831–6864. doi:10.​1029/​96jd03436 CrossRef
    Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38(4):513–543CrossRef
    Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET-a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16. doi:10.​1016/​s0034-4257(98)00031-5 CrossRef
    Horvath H (1995) Estimation of the average visibility in central Europe. Atmos Environ 29(2):241–246. doi:10.​1016/​1352-2310(94)00236-e CrossRef
    IPCC (2007) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York
    IPCC (2013) Climate change 2013: the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. vol IPCC WGI fifth assessment report. Cambridge University Press, Cambridge and New York
    Junge C (1955) The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J Meteorol 12(1):13–25. doi:10.​1175/​1520-0469(1955)012<0013:​tsdaao>2.​0.​co;2 CrossRef
    Kaskaoutis DG, Kambezidis HD (2006) Investigation into the wavelength dependence of the aerosol optical depth in the Athens area. Q J R Meteorol Soc 132(620):2217–2234. doi:10.​1256/​qj.​05.​183 CrossRef
    Kaskaoutis DG, Kambezidis HD (2008) The role of aerosol models of the SMARTS code in predicting the spectral direct-beam irradiance in an urban area. Renew Energy 33(7):1532–1543. doi:10.​1016/​j.​renene.​2007.​09.​006 CrossRef
    Kaskaoutis DG, Kambezidis HD, Hatzianastassiou N, Kosmopoulos PG, Badarinath KVS (2007) Aerosol climatology: on the discrimination of aerosol types over four AERONET sites. Atmos Chem Phys Discuss 7(3):6357–6411. doi:10.​5194/​acpd-7-6357-2007 CrossRef
    King MD, Byrne DM (1976) A method for inferring total ozone content from the spectral variation of total optical depth obtained with a solar radiometer. J Atmos Sci 33(11):2242–2251. doi:10.​1175/​1520-0469(1976)033<2242:​amfito>2.​0.​co;2 CrossRef
    Li F, Lu D (1997) Features of aerosol optical depth with visibility grade over Beijing. Atmos Environ 31(20):3413–3419. doi:10.​1016/​S1352-2310(97)83211-6 CrossRef
    Lin J, van Donkelaar A, Xin J, Che H, Wang Y (2014) Clear-sky aerosol optical depth over East China estimated from visibility measurements and chemical transport modeling. Atmos Environ 95:258–267CrossRef
    Mielonen T, Portin H, Komppula M, Leskinen A, Tamminen J, Ialongo I, Hakkarainen J, Lehtinen KEJ, Arola A (2012) Biomass burning aerosols observed in Eastern Finland during the Russian wildfires in summer 2010-part 2: remote sensing. Atmos Environ 47:279–287CrossRef
    Mogo S, Cachorro VE, de Frutos AM (2012) In situ UV–VIS-NIR absorbing properties of atmospheric aerosol particles: estimates of the imaginary refractive index and comparison with columnar values. J Environ Manag 111:267–271CrossRef
    Müller D, Lee KH, Gasteiger J, Tesche M, Weinzierl B, Kandler K, Müller T, Toledano C, Otto S, Althausen D, Ansmann A (2012) Comparison of optical and microphysical properties of pure Saharan mineral dust observed with AERONET sun photometer, Raman lidar, and in situ instruments during SAMUM 2006. J Geophys Res D Atmos 117(7), D07211. doi:10.​1029/​2011JD016825
    O’Neill N, Royer A (1993) Extraction of bimodal aerosol-size distribution radii from spectral and angular slope (Angstrom) coefficients. Appl Opt 32(9):1642–1645. doi:10.​1364/​ao.​32.​001642 CrossRef
    Peppler RA, Bahrmann CP, Barnard JC, Laulainen NS, Turner DD, Campbell JR, Hlavka DL, Cheng MD, Ferrare RA, Halthore RN, Heilman LA, Lin CJ, Ogren JA, Poellot MR, Remer LA, Spinhirne JD, Sassen K, Splitt ME (2000) ARM Southern Great Plains site observations of the smoke pall associated with the 1998 Central American fires. Bull Am Meteorol Soc 81(11):2563–2591. doi:10.​1175/​1520-0477(2000)081<2563:​asgpso>2.​3.​co;2 CrossRef
    Qiu J, Yang L (2000) Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980–1994. Atmos Environ 34:603–609CrossRef
    Ramachandran S, Srivastava R (2013) Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities. Environ Sci: Processes Impacts 15(5):1070–1077
    Reid JS, Piketh SJ, Walker AL, Burger RP, Ross KE, Westphal DL, Bruintjes RT, Holben BN, Hsu C, Jensen TL, Kahn RA, Kuciauskas AP, Mandoos AA, Mangoosh AA, Miller SD, Porter JN, Reid EA, Tsay SC (2008) An overview of UAE2 flight operations: observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf. J Geophys Res D Atmos. 113 (14). doi:10.1029/2007jd009435
    Reid JS, Hyer EJ, Johnson RS, Holben BN, Yokelson RJ, Zhang J, Campbell JR, Christopher SA, Di Girolamo L, Giglio L, Holz RE, Kearney C, Miettinen J, Reid EA, Turk FJ, Wang J, Xian P, Zhao G, Balasubramanian R, Chew BN, Janjai S, Lagrosas N, Lestari P, Lin N-H, Mahmud M, Nguyen AX, Norris B, Oanh NTK, Oo M, Salinas SV, Welton EJ, Liew SC (2013) Observing and understanding the Southeast Asian aerosol system by remote sensing: an initial review and analysis for the seven Southeast Asian studies (7SEAS) program. Atmos Res 122(0):403–468. doi:10.​1016/​j.​atmosres.​2012.​06.​005 CrossRef
    Retalis A, Hadjimitsis DG, Michaelides S, Tymvios F, Chrysoulakis N, Clayton CRI, Themistocleous K (2010) Comparison of aerosol optical thickness with in situ visibility data over Cyprus. Nat Hazards Earth Syst Sci 10(3):421–428. doi:10.​1029/​2001GL013205 CrossRef
    Russell PB, Bergstrom RW, Shinozuka Y, Clarke AD, DeCarlo PF, Jimenez JL, Livingston JM, Redemann J, Dubovik O, Strawa A (2010) Absorption angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys 10(3):1155–1169. doi:10.​5194/​acp-10-1155-2010 CrossRef
    Schuster GL, Dubovik O, Holben BN (2006) Angstrom exponent and bimodal aerosol size distributions. J Geophys Res Atmos 111(D7), D07207. doi:10.​1029/​2005jd006328 CrossRef
    Sherwood S, Alexander MJ, Brown A, McFarlane N, Gerber E, Feingold G, Scaife A, Grabowski W (2013) Climate processes: clouds, aerosols and dynamics. In: Asrar GR, Hurrell JW (eds) Climate science for serving society. Springer, Netherlands, pp 73–103. doi:10.​1007/​978-94-007-6692-1_​4 CrossRef
    Singh A, Dey S (2012) Influence of aerosol composition on visibility in megacity Delhi. Atmos Environ 62:367–373CrossRef
    Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud-screening and quality control algorithms for the AERONET database. Remote Sens Environ 73(3):337–349. doi:10.​1016/​S0034-4257(00)00109-7 CrossRef
    Song C, Zaveri RA, Alexander ML, Thornton JA, Madronich S, Ortega JV, Zelenyuk A, Yu X-Y, Laskin A, Maughan DA (2007) Effect of hydrophobic primary organic aerosols on secondary organic aerosol formation from ozonolysis of α-pinene. Geophys Res Lett 34(20), L20803. doi:10.​1029/​2007gl030720 CrossRef
    Srivastava AK, Dey S, Tripathi SN (2012) Chapter 3: aerosol characteristics over the indo-gangetic basin: implications to regional climate. Atmospheric aerosols - regional characteristics - chemistry and physics. INTECH. doi:10.​5772/​47782
    Tang IN (1996) Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J Geophys Res Atmos 101(D14):19245–19250. doi:10.​1029/​96jd03003 CrossRef
    Tesfaye M, Botai J, Sivakumar V, Mengistu Tsidu G (2013) Evaluation of regional climatic model simulated aerosol optical properties over South Africa using ground-based and satellite observations. ISRN Atmos Sci 2013:17. doi:10.​1155/​2013/​237483
    Tripathi SN, Dey S, Chandel A, Srivastava S, Singh RP, Holben BN (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23(4):1093–1101. doi:10.​1029/​2004JD004924 CrossRef
    van Beelen AJ, Roelofs GJH, Hasekamp OP, Henzing JS, Röckmann T (2013) Estimation of aerosol water and chemical composition from AERONET at Cabauw, the Netherlands. Atmos Chem Phys Discuss 13(6):15191–15232. doi:10.​5194/​acpd-13-15191-2013 CrossRef
    Wang J, Christopher SA (2003) Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophys Res Lett 30(21):2095. doi:10.​1029/​2003gl018174 CrossRef
    Williams M, Cornford D, Bastin L, Jones R, Parker S (2011) Automatic processing, quality assurance and serving of real-time weather data. Comput Geosci 37:353–362CrossRef
    Ziemba LD, Thornhill KL, Ferrare R, Barrick J, Beyersdorf AJ, Chen G, Crumeyrolle SN, Hair J, Hostetler C, Hudgins C, Obland M, Rogers R, Scarino AJ, Winstead EL, Anderson BE (2013) Airborne observations of aerosol extinction by in situ and remote-sensing techniques: evaluation of particle hygroscopicity. Geophys Res Lett 40(2):417–422. doi:10.​5194/​amt-5-73-201
  • 作者单位:Fuyi Tan (1)
    Hwee San Lim (1)
    Khiruddin Abdullah (1)
    Brent Holben (2)

    1. School of Physics, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
    2. NASA Goddard Space Flight Center, Greenbelt, MD, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
This study aims to investigate and establish a suitable model that can help to estimate aerosol optical depth (AOD) in order to monitor aerosol variations especially during non-retrieval time. The relationship between actual ground measurements (such as air pollution index, visibility, relative humidity, temperature, and pressure) and AOD obtained with a CIMEL sun photometer was determined through a series of statistical procedures to produce an AOD prediction model with reasonable accuracy. The AOD prediction model calibrated for each wavelength has a set of coefficients. The model was validated using a set of statistical tests. The validated model was then employed to calculate AOD at different wavelengths. The results show that the proposed model successfully predicted AOD at each studied wavelength ranging from 340 nm to 1020 nm. To illustrate the application of the model, the aerosol size determined using measure AOD data for Penang was compared with that determined using the model. This was done by examining the curvature in the ln [AOD]–ln [wavelength] plot. Consistency was obtained when it was concluded that Penang was dominated by fine mode aerosol in 2012 and 2013 using both measured and predicted AOD data. These results indicate that the proposed AOD prediction model using routine measurements as input is a promising tool for the regular monitoring of aerosol variation during non-retrieval time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700