CO2-facilitated transport performance of poly(ionic liquids) in supported liquid membranes
详细信息    查看全文
  • 作者:Xiangjun Sun (1)
    Meng Zhang (1)
    Ruiqian Guo (1)
    Jujie Luo (1)
    Jinping Li (1)
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:50
  • 期:1
  • 页码:104-111
  • 全文大小:1,184 KB
  • 参考文献:1. Li P, Pramoda KP, Chung TS (2011) CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)room temperature ionic liquid composite membranes. Ind Eng Chem Res 50:9344-353 CrossRef
    2. Standing TH (2001) Climate change projections hinge on global CO2, temperature data. Oil Gas J 99:20-1
    3. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14-7 CrossRef
    4. Yeo ZY, Chew TL, Zhu PW et al (2012) Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review. J Nat Gas Chem 3:282-98 CrossRef
    5. Xiao YC, Low BT, Hosseini SS et al (2009) The strategy of molecular designand modification of polyimide-based membranes for CO2 removal from natural gas—a review. Prog Polym Sci 34:561-80 CrossRef
    6. Drioli E, Brunetti A, Di Profio G et al (2012) Process intensification strategies and membrane engineering. Green Chem 14:1561-572 CrossRef
    7. Shao L, Low BT, Chung TS et al (2009) Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci 327:18-1 CrossRef
    8. Scholes CA, Smith KH, Kentish SE, Stevens GW (2010) CO2 capture from pre-combustion processes—strategies for membrane gas separation. Int J Greenhouse Gas Control 4:739-55 CrossRef
    9. Plasynski SI, Chen Z (2000) Review of CO2 capture technologies and some improvement opportunities. ACS Div Fuel Chem Prepr 45:644-49
    10. Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94:1-5 CrossRef
    11. Fortunato R, Afonso CAM, Reis MAM, Crespo JG (2004) Supported liquid membranes using ionic liquid: study of stability and transport mechanisms. J Membr Sci 242:197-09 CrossRef
    12. Iiconich J, Myers C, Pennline H, Luebke D (2007) Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125°C. J Membr Sci 298:41-7 CrossRef
    13. Ferguson L, Scovazzo P (2007) Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: data and correlations. Ind Eng Chem Res 46:1369-374 CrossRef
    14. Yokozeki A, Shiflett MB (2007) Hydrogen purification using room-temperature ionic liquids. Appl Energy 84:351-61 CrossRef
    15. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble RD (2004) Gas separation using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membr Sci 238:57-3 CrossRef
    16. Scovazzo P, Havard D, McShea M, Mixon S, Morgan D (2009) Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J Membr Sci 327:41-8 CrossRef
    17. Bara JE, Gabrel CJ, Carlisle TK, Camper DE, Finotello A, Gin DL, Noble RD (2009) Gas separation in fluoroalkyl-functionaliz
  • 作者单位:Xiangjun Sun (1)
    Meng Zhang (1)
    Ruiqian Guo (1)
    Jujie Luo (1)
    Jinping Li (1)

    1. Research Institute of Special Chemicals, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, China
  • ISSN:1573-4803
文摘
Six types of PILs were designed and synthesized by radical polymerization reaction and ion exchange reaction and the 1H NMR analysis and TG-MS analysis proved the successful procedure and their CO2 permeation properties were evaluated. 1-butyl 3-methylimidazole double trifluoromethane sulfonate ([bmim][Tf2N])-based facilitated transport membrane, with 10?wt% poly([ViEtIm] Tf2N), showed an excellent CO2 permeability of 920 Barrer, similar to that of the others investigated. PILs were distributed in the SILM using the “like dissolves like-theory to investigate the gas permeation separation performance before and after doping of the PILs in SILM. Owing to the reversible interaction between the CO2 molecules and electropositive PIL chains, this supported ionic liquid membrane selectively transfer CO2 more rapidly. The polymer chains play the role of mobile CO2 carrier in the SLM, and introduce facilitated transport mechanism. This concept may provide a means for fabricating a highly permeable and selective membrane to break through Robeson’s upper bound.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700