-1 -1, is derived and applied to approximation of the usual fractional derivative. A software implementation of such quadratures was done by the recent Mathematica package OrthogonalPolynomials (cf. [A.S. Cvetkovi?, G.V. Milovanovi?, Facta Univ. Ser. Math. Inform. 19 (2004), 17-6] and [G.V. Milovanovi?, A.S. Cvetkovi?, Math. Balkanica 26 (2012), 169-84]). Several numerical examples are presented and they show the effectiveness of the proposed approach." />
Nonstandard Gauss—Lobatto quadrature approximation to fractional derivatives
详细信息    查看全文
  • 作者:Shahrokh Esmaeili ; Gradimir V. Milovanovi?
  • 关键词:Primary 65D30 ; Secondary 33C45 ; 41A55 ; 65D32 ; fractional derivative ; quadrature rule ; Gaussian quadrature ; nodes ; weights ; software implementation ; Mathematica package
  • 刊名:Fractional Calculus and Applied Analysis
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:17
  • 期:4
  • 页码:1075-1099
  • 全文大小:962 KB
  • 参考文献:1. G.E. Andrews, R. Askey, R. Roy, / Special Functions. Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge (1999). CrossRef
    2. T.M. Atanackovi?, S. Pilipovi?, B. Stankovi?, D. Zorica, / Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. ISTE, London -Wiley, Hoboken (2014). CrossRef
    3. D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, / Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2012).
    4. H. Brass, K. Petras, / Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. American Mathematical Soc., Providence, RI. (2011). CrossRef
    5. P.L. Butzer, U. Westphal, An introduction to fractional calculus, In: / Applications of Fractional Calculus in Physics. World Sci. Publ., River Edge, NJ (2000), 1-5. CrossRef
    6. M. Caputo, Linear models of dissipation whose / Q is almost frequency independent -II. / Geophysical Journal of the Royal Astronomical Society 13 (1967), 529-39. CrossRef
    7. A.S. Cvetkovi?, G.V. Milovanovi?, The Mathematica package ”OrthogonalPolynomials- / Facta Univ. Ser. Math. Inform. 9 (2014), 17-6.
    8. K. Diethelm, / The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin, 2010. CrossRef
    9. K. Diethelm, Error bounds for the numerical integration of functions with limited smoothness. / SIAM J. Numer. Anal. 52, No 2 (2014), 877-79. CrossRef
    10. S. Esmaeili, M. Shamsi, M. Dehghan, Numerical solution of fractional differential equations via a Volterra integral equation approach. / Centr. Eur. J. Phys. 11 (2013), 1470-481. CrossRef
    11. S. Esmaeili, M. Shamsi, Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. / Comput. Math. Appl. 62 (2011), 918-29. CrossRef
    12. D. Funaro, / Polynomial Approximation of Differential Equations. Springer-Verlag, Berlin (1992).
    13. R. Garrappa, M. Popolizio, Evaluation of generalized Mittag-Leffler functions on the real line. / Adv. Comput. Math. 39 (2013), 205-25. CrossRef
    14. W. Gautschi, / Orthogonal Polynomials: Computation and Approximation. Oxford University Press, New York (2004).
    15. G.H. Golub, J.H. Welsch, Calculation of Gauss quadrature rules. / Math. Comp. 23 (1969), 221-30. CrossRef
    16. R. Gorenflo, J. Loutchko, Y. Luchko, Computation of the Mittag-Leffler function and its derivatives, / Fract. Calc. Appl. Anal. 5 (2002), 491-18.
    17. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: / Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), CISMCourses and Lectures, 378, Springer, Vienna (1997), 223-76. CrossRef
    18. N. Hale, A. Townsend, Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights. / SIAM J. Sci. Comput. 35 (2013), 652-74. CrossRef
    19. N. Hale, L.N. Trefethen, Chebfun and numerical quadrature. / Sci. China Ser. A 55 (2012), 1749-760. CrossRef
    20. T. Hasegawa, H. Sugiura, Uniform approximation to fractional derivatives of functions of algebraic singularity. / J. Comput. Appl. Math. 228 (2009), 247-53. CrossRef
    21. R. Herrmann, / Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011). CrossRef
    22. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, / Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam (2006). CrossRef
    23. V. Kiryakova, / Generalized Fractional Calculus and Applications. Pitman Research Notes in Math. Series, 301, Longman Scientific & Technical, Harlow; copubl. by John Wiley & Sons, Inc., New York (1994).
    24. C. Li, F. Zheng, F. Liu, Spectral approximations to the fractional integral and derivative. / Fract. Calc. Appl. Anal. 15 (2012), 383-06; DOI: 10.2478/s13540-012-0028-x; http://link.springer.com/article/10.2478/s13540-012-0028-x . CrossRef
    25. F. Mainardi, / Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models. Imperial College Press, London (2010). CrossRef
    26. F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics. In: / Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), CISM Courses and Lectures, 378, Springer, Vienna (1997), 291-48. CrossRef
    27. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. / Fract. Calc. Appl. Anal. 4, No 2 (2001), 153-92.
    28. G. Mastroianni, G.V. Milovanovi?, / Interpolation Processes: Basic Theory and Applications. Springer-Verlag, Berlin (2008). CrossRef
    29. K.S. Miller, B. Ross, / An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York (1993).
    30. G.V. Milovanovi?, Müntz orthogonal polynomials and their numerical evaluation. In: / Applications and Computation of Orthogonal Polynomials (W. Gautschi, G.H. Golub, and G. Opfer, Eds.), ISNM, Vol. 131, Birkh?user, Basel (1999), 179-02. CrossRef
    31. G.V. Milovanovi?, Chapter 23: Computer algorithms and software packages. In: / Walter Gautschi: Selected Works and Commentaries, Volume 3 (C. Brezinski, A. Sameh, Eds.), Birkh?user, Basel (2014), 9-0. CrossRef
    32. G.V. Milovanovi?, A.S. Cvetkovi?, Gaussian type quadrature rules for Müntz systems. / SIAM J. Sci. Comput. 27 (2005), 893-13. CrossRef
    33. G.V. Milovanovi?, A.S. Cvetkovi?, Nonstandard Gaussian quadrature formulae based on operator values. / Adv. Comput. Math. 32 (2010), 431-86. CrossRef
    34. G.V. Milovanovi?, A.S. Cvetkovi?, Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type. / Math. Balkanica 26, No 1- (2012), 169-84.
    35. P. Novati, Numerical approximation to the fractional derivative operator. / Numer. Math. 127 (2014), 539-66. CrossRef
    36. I. Podlubny, / Fractional Differential Equations. Academic Press, San Diego, CA (1999).
    37. I. Podlubny, M. Kacenak, / The Matlab mlf / code. MATLAB Central File Exchange (2001-012), File ID: 8738.
    38. S.G. Samko, A.A. Kilbas, O.I. Marichev, / Fractional Integrals and Derivatives. Theory and Applications. Edited and with a foreword by S.M. Nikol’ski?, Transl. from the 1987 Russian original, Revised by the authors. Gordon and Breach Science Publishers, Yverdon (1993).
    39. H. Sugiura, T. Hasegawa, Quadrature rule for Abel’s equations: uniformly approximating fractional derivatives. / J. Comput. Appl. Math. 223 (2009), 459-68. CrossRef
    40. L.N. Trefethen, / Approximation Theory and Approximation Practice, SIAM, Philadelphia, PA (2013).
    41. D. Valério, J.J. Trujillo, M. Rivero, J.A.T. Machado, D. Baleanu, Fractional calculus: A survey of useful formulas. / Eur. Phys. J. Special Topics 222 (2013), 1827-846. CrossRef
  • 作者单位:Shahrokh Esmaeili (1)
    Gradimir V. Milovanovi? (2)

    1. Department of Applied Mathematics, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
    2. Mathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11001, Belgrade, Serbia
文摘
A family of nonstandard Gauss-Jacobi-Lobatto quadratures for numerical calculating integrals of the form ?span class="a-plus-plus stack"> -1 1 f-/em>(x)(1-x)α dx, α > -1, is derived and applied to approximation of the usual fractional derivative. A software implementation of such quadratures was done by the recent Mathematica package OrthogonalPolynomials (cf. [A.S. Cvetkovi?, G.V. Milovanovi?, Facta Univ. Ser. Math. Inform. 19 (2004), 17-6] and [G.V. Milovanovi?, A.S. Cvetkovi?, Math. Balkanica 26 (2012), 169-84]). Several numerical examples are presented and they show the effectiveness of the proposed approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700