Forward and inverse dynamics of nonholonomic mechanical systems
详细信息    查看全文
  • 作者:Domenico Guida (1)
    Carmine M. Pappalardo (1)
  • 关键词:Mechanical systems ; Forward and inverse dynamics ; Fundamental equations of constrained motion ; Nonholonomic constraints ; Underactuation equivalence principle
  • 刊名:Meccanica
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:49
  • 期:7
  • 页码:1547-1559
  • 全文大小:353 KB
  • 参考文献:1. Guida D, Pappalardo CM (2012) A new control algorithm for nonlinear underactuated mechanical systems. Int J Mech Eng Ind Des 1:61-2
    2. Pappalardo CM (2012) Combination of extended Udwadia–Kalaba control algorithm with extended Kalman filter estimation method. Int J Mech Eng Ind Des 1:1-8
    3. Shabana AA (2013) Dynamics of multibody systems. Cambridge University Press, Cambridge CrossRef
    4. Shabana AA (2010) Computational dynamics. Wiley, New York CrossRef
    5. Moon FC (1992) Applied dynamics. Wiley–Interscience, New York
    6. Moon FC (1992) Chaotic and fractal dynamics: an introduction for applied scientists and engineers. Wiley–Interscience, New York CrossRef
    7. de Jalon JG, Bayo E (2011) Kinematic and dynamic simulation of multibody systems: the real-time challenge. Springer, New York
    8. Bauchau OA (2011) Flexible multibody dynamics. Springer, Dordrecht CrossRef
    9. Fantoni I, Lozano R (2002) Non-linear control for underactuated mechanical systems. Springer, Berlin CrossRef
    10. Bloch AM, Baillieul J, Crouch P, Marsden J (2007) Nonholonomic mechanics and control. Springer, Berlin
    11. Goldstein H, Poole CP, Safko JL (2001) Classical mechanics. Addison-Wesley, Reading
    12. Taylor JR (2005) Classical mechanics. University Science Books, Sausalito
    13. Siciliano B, Sciavicco L, Villani L, Oriolo G (2011) Robotics: modelling, planning and control. Springer, Berlin
    14. Jain A (2011) Robot and multibody dynamics: analysis and algorithms. Springer, New York CrossRef
    15. Pappalardo CM (2012) Dynamics, identification and control of multibody systems. University of Salerno, Salerno
    16. Udwadia FE (2014) A new approach to stable optimal control of complex nonlinear dynamical systems. J Appl Mech 81:031001 CrossRef
    17. Udwadia FE, Schutte AD (2010) Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech 213:111-29 CrossRef
    18. Meirovitch L (2010) Methods of analytical dynamics. Dover, New York
    19. Udwadia FE, Kalaba RE (1996) Analytical dynamics: a new approach. Cambridge University Press, Cambridge CrossRef
    20. Lanczos C (1986) The variational principles of mechanics. Dover, New York
    21. Shabana AA (2011) Computational continuum mechanics. Cambridge University Press, Cambridge CrossRef
    22. Meirovitch L (2010) Fundamentals of vibrations. Waveland, Long Grove
    23. Flannery MR (2005) The enigma of nonholonomic constraints. Am J Phys 73(3):265 CrossRef
    24. Landau LD, Lifshitz EM (1976) Mechanics. Butterworth-Heinemann, Oxford
    25. Flannery MR (2011) The elusive D’Alembert–Lagrange dynamics of nonholonomic systems. Am J Phys 79(9):932 CrossRef
    26. Flannery MR (2011) D’Alembert–Lagrange analytical dynamics for nonholonomic systems. J Math Phys 52(3):1-9
    27. Greiner W (2010) Classical mechanics: systems of particles and Hamiltonian dynamics. Springer, Berlin CrossRef
    28. Udwadia FE, Kalaba RE (1992) A new perspective on constrained motion. Proc R Soc Lond A 439:407-10 CrossRef
    29. Hertz H (2012) The principles of mechanics: presented in a new form. Cosimo Classics, New York
    30. Udwadia FE, Kalaba RE (1993) On motion. J Frankl Inst 330:571-77 CrossRef
    31. Udwadia FE, Kalaba RE (2002) On the foundations of analytical dynamics. Int J Nonlinear Mech 37:1079-090 CrossRef
    32. Udwadia FE, Phohomsiri P (2006) Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc R Soc Lond A 462:2097-117 CrossRef
    33. Udwadia FE, Kalaba RE, De Falco D (2009) Dinamica Analitica. Un Nuovo Approccio, Edises
    34. Cheli F, Pennestri E (2006) Cinematica e Dinamica dei Sistemi Multibody, vol 1. Casa Editrice Ambrosiana, Milano
    35. Pennestri E, De Falco D, Vita L (2009) An investigation of the influence of the pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J Aerosp Eng 22:365-72 CrossRef
    36. Udwadia FE, Wanichanon T (2010) Hamel’s paradox and the foundations of analytical dynamics. Appl Math Comput 217:1253-263 CrossRef
    37. Udwadia FE (2005) Equations of motion for constrained multibody systems and their control. J Optim Theory Appl 127(3):627-38 CrossRef
    38. Udwadia FE (2008) Optimal tracking control of nonlinear dynamical systems. Proc R Soc Lond A 464:2341-363 CrossRef
    39. Slotine JJ, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs
    40. Golub GH, Van Loan CF (1996) Matrix computations. The Johns Hopkins University Press, Baltimore
    41. Strang G (2005) Linear algebra and its applications. Cengage Learning, Stamford
    42. Kane TR, Levinson DA (1985) Dynamics: theory and applications. McGraw-Hill College, New York
  • 作者单位:Domenico Guida (1)
    Carmine M. Pappalardo (1)

    1. Department of Industrial Engineering (DIIN), University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
  • ISSN:1572-9648
文摘
This paper deals with the forward and the inverse dynamic problems of mechanical systems subjected to nonholonomic constraints. The intrinsically dual nature of these two problems is identified and utilised to develop a systematic approach to formulate and solve them according to an unified framework. The proposed methodology is based on the fundamental equations of constrained motion which derive from Gauss’s principle of least constraint. The main advantage arising from using the fundamental equations of constrained motion is that they represent an effective method capable to derive the generalised acceleration of a mechanical system, constrained in general by a set of nonholonomic constraints, together with the generalized constraint forces (forward dynamics). When the constraint equations are used to represent the desired behaviour of the mechanical system under study, the generalised constraint forces deriving from the fundamental equations of constrained motion provide the control actions which reproduce the specified motion for the system (inverse dynamics). This approach is systematically extended to underactuated mechanical systems introducing a new method named underactuation equivalence principle. The underactuation equivalence principle is founded on the key idea that the underactuation property of a mechanical system can be mathematically represented using a particular set of nonholonomic constraint equations. Two simple case-studies are reported to exemplify the proposed methodology. In the first case-study the computation of the generalised constraint forces relative to the revolute joint constraints of a physical pendulum is illustrated. In the second case-study the calculation of the control action which solves the swing-up problem for an inverted pendulum is described.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700