Poro-elasto-plastic modeling of complex hydraulic fracture propagation: simultaneous multi-fracturing and producing well interference
详细信息    查看全文
  • 作者:HanYi Wang
  • 刊名:Acta Mechanica
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:227
  • 期:2
  • 页码:507-525
  • 全文大小:2,562 KB
  • 参考文献:1.Economides M., Nolte K.: Reservoir Stimulation, 3rd edn. Wiley, Chichester (2000)
    2.Khristianovich, S., Zheltov, Y.: Formation of vertical fractures by means of highly viscous fluids. In: Proceedings of 4th World Petroleum Congress, Rome, Sec. II, pp. 579–586 (1955)
    3.Geertsma J., De Klerk F.: A rapid method of predicting width and extent of hydraulic induced fractures. J. Pet. Technol. 246, 1571–1581 (1969)CrossRef
    4.Perkins, T., Kern, L.: Widths of hydraulic fractures. J. Pet. Technol. 222, 937--949 (1961) (Trans. AIME)
    5.Nordgren R.: Propagation of vertical hydraulic fractures. J. Pet. Technol. 253, 306–314 (1972)
    6.Karihaloo B.L., Xiao Q.Z.: Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Comput. Struct. 81, 119–129 (2003)CrossRef
    7.Lecampion B.: An extended finite element method for hydraulic fracture problems. Commun. Numer. Methods Eng. 25, 121–133 (2009)CrossRef MathSciNet MATH
    8.Dahi-Taleghani A., Olson J.E.: Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures. SPE J. 16(03), 575–581 (2011)CrossRef
    9.Leonhart D., Meschke D.: Extended finite element method for hydro-mechanical analysis of crack propagation in porous materials. Proc. Appl. Math. Mech. 11, 161–162 (2011)CrossRef
    10.Gordeliy E., Peirce A.: Implicit level set schemes for modeling hydraulic fractures using the XFEM. Comput. Methods Appl. Mech. Eng. 266, 125–143 (2013)CrossRef MathSciNet MATH
    11.Papanastasiou P.: The influence of plasticity in hydraulic fracturing. Int. J. Fract. 84, 61–79 (1997)CrossRef
    12.Papanastasiou P.: The effective fracture toughness in hydraulic fracturing. Int. J. Fract. 96, 127–147 (1999)CrossRef
    13.Germanovich L.N., Astakhov D.K., Shlyapobersky J., Mayerhofer M.J., Dupont C., Ring L.M.: Modeling multi-segmented hydraulic fracture in two extreme cases: no leak-off and dominating leak-off. Int. J. Rock Mech. Min. Sci. 35, 551–554 (1998)CrossRef
    14.Van Dam D.B., Papanastasiou P., De Pater C.J.: Impact of rock plasticity on hydraulic fracture propagation and closure. SPE Prod. Facil. 17, 149–159 (2002)CrossRef
    15.Sone, H., Zoback, M.D.: Visco-plastic properties of shale gas reservoir rocks. Presented at the 45th US Rock Mechanics/Geomechanics Symposium, June 26–29, San Francisco, California (2011)
    16.Parker, M., Petre, E., Dreher, D., Buller, D.: Haynesville shale: hydraulic fracture stimulation approach. Paper 0913 Presented at the International Coalbed and Shale Gas Symposium, Tuscaloosa, Alabama, USA, 18–22 May 2009
    17.Barenblatt G.I.: The formation of equilibrium cracks during brittle fracture: general ideas and hypothesis, axially symmetric cracks. J. Appl. Math. Mech. 23, 622–636 (1959)CrossRef MathSciNet MATH
    18.Barenblatt, G.I.: The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advanced in Applied Mechanics, pp. 55–129. Academic Press, New York (1962)
    19.Dugdale D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRef
    20.Griffith A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. 221, 163–198 (1921)CrossRef
    21.Griffith, A.A.: The theory of rupture. In: Proceedings of 1st International Congress for Applied Mechanics, Delft, The Netherlands, pp. 55–63 (1924)
    22.Mokryakov V.: Analytical solution for propagation of hydraulic fracture with Barenblatt’s cohesive tip zone. Int. J. Fract. 169, 159–168 (2011)CrossRef MATH
    23.Yao Y.: Linear elastic and cohesive fracture analysis to model hydraulic fracture in brittle and ductile rocks. Rock Mech. Rock Eng. 45, 375–387 (2012)CrossRef
    24.Wang, H., Marongiu-Porcu, M., Economides, M.J.: Poroelastic and poroplastic modeling of hydraulic fracturing in brittle and ductile formations. SPE Prod Oper (2015, in press)
    25.Busetti S., Mish K., Reches Z.: Damage and plastic deformation of reservoir rocks: Part 1. Damage fracturing. AAPG Bull. 96, 1687–1709 (2012)CrossRef
    26.Busetti S., Mish K., Hennings P., Reches Z.: Damage and plastic deformation of reservoir rocks: Part 2. Propagation of a hydraulic fracture. AAPG Bull. 96, 1711–1732 (2012)CrossRef
    27.Boone T.J., Ingraffea A.R.: A numerical procedure for simulation of hydraulically driven fracture propagation in poroelastic media. Int. J. Numer. Anal. Methods Geomech. 14, 27–47 (1990)CrossRef
    28.Biot M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)CrossRef MATH
    29.Ghassemi, A.: Three-dimensional poroelastic hydraulic fracture simulation using the displacement discontinuity method. PhD dissertation, University of Oklahoma, Norman, Oklahoma (1996)
    30.Vermeer P.A., de Borst R.: Non-associated plasticity for soils, concrete and rock. Heron 29, 3–64 (1984)
    31.Belytschko T., Black T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)CrossRef MathSciNet MATH
    32.Melenk J., Babuska I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 39, 289–314 (1996)CrossRef MathSciNet
    33.Fries T.P., Baydoun M.: Crack propagation with the extended finite element method and a hybrid explicit-implicit crack description. Int. J. Numer. Methods Eng. 89(12), 1527–1558 (2012)CrossRef MathSciNet MATH
    34.Sukumar N., Huang Z.Y., Prevost J.-H., Suo Z.: Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Methods Eng. 59, 1075–1102 (2004)CrossRef MATH
    35.Sukumar N., Prevost J.-H.: Modeling quasi-static crack growth with the extended finite element method Part I: computer implementation. Int. J. Solids Struct. 40, 7513–7537 (2003)CrossRef MATH
    36.Elguedj T., Gravouil A., Combescure A.: Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 195, 501–515 (2006)CrossRef MATH
    37.Tomar V., Zhai J., Zhou M.: Bounds for element size in a variable stiffness cohesive finite element model. Int. J. Numer. Methods Eng. 61, 1894–1920 (2004)CrossRef MATH
    38.Kanninen M.F., Popelar C.H.: Advanced fracture mechanics, 1st edn. Oxford University Press, Oxford (1985)
    39.Turon A., Camanho P.P., Costa J., Davila C.G.: A damage model for the simulation of delamination in advanced composites under variable-model loading. Mech. Mater. 38, 1072–1089 (2006)CrossRef
    40.Benzeggagh M.L., Kenane M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449 (1996)CrossRef
    41.Rabczuk T., Zi G., Gerstenberger A., Wall A.: A new crack tip element for the phantom-node method with arbitrary cohesive cracks. Int. J. Numer. Methods Eng. 75, 577–599 (2008)CrossRef MATH
    42.Song J.H., Areias P.M.A., Belytschko T.: A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Methods Eng. 67, 868–893 (2006)CrossRef MATH
    43.Remmers J.J.C., de Borst R., Needleman A.: The simulation of dynamic crack propagation using the cohesive segments method. J. Mech. Phys. Solids 56, 70–92 (2008)CrossRef MathSciNet MATH
    44.Roussel N.P., Sharma M.M.: Optimizing fracture spacing and sequencing in horizontal well fracturing. SPE Prod. Oper. 26, 173–184 (2010)CrossRef
    45.Wu K., Olson J.E.: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells. SPE J. 20, 337–346 (2015)CrossRef
    46.Afrouz A.: Practical handbook of rock mass classification systems and modes of ground failure, 1st edn. CRC Press, Boca Raton (1992)
    47.Peza, E., Hand, R., Happer, W., Jayakumar, R., Wood, D., Wigger, E., Dean, B., Al-Jaial, Z., Ganpule,S.: How Fracture Interference Impacts Woodford Shale Gas Production. Schlumberger ShaleTech Report, pp. 10–14 (2015)
  • 作者单位:HanYi Wang (1)

    1. Petroleum and Geosystems Engineering Department, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0300, Austin, TX, USA
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics, Fluids and Thermodynamics
    Continuum Mechanics and Mechanics of Materials
    Structural Mechanics
    Vibration, Dynamical Systems and Control
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Wien
  • ISSN:1619-6937
文摘
With the increasing wide use of hydraulic fractures in the petroleum industry, it is essential to accurately predict the behavior of fractures based on the understanding of fundamental mechanisms governing the process. For effective reservoir exploration and development, hydraulic fracture pattern, geometry and associated dimensions are critical in determining well stimulation efficiency. In shale formations, non-planar, complex hydraulic fractures are often observed, due to the activation of preexisting natural fractures and the interaction between multiple, simultaneously propagating hydraulic fractures. The propagation of turning non-planar fractures due to the interference of nearby producing wells has also been reported. Current numerical simulation of hydraulic fracturing generally assumes planar crack geometry and weak coupling behavior, which severely limits the applicability of these methods in predicting fracture propagation under complex subsurface conditions. In addition, the prevailing approach for hydraulic fracture modeling also relies on linear elastic fracture mechanics (LEFM) by assuming the rock behaves purely elastically until complete failure. LEFM can predict hard rock hydraulic fracturing processes reasonably, but often fails to give accurate predictions of fracture geometry and propagation pressure in ductile and quasi-brittle rocks, such as poorly consolidated/unconsolidated sands and ductile shales, even in the form of simple planar geometry. In this study, we present a fully coupled poro-elasto-plastic model for hydraulic fracture propagation based on the theories of extend finite element, cohesive zone method and Mohr–Coulomb plasticity, which is able to capture complex hydraulic fracture geometry and plastic deformations in reservoir rocks explicitly. To illustrate the capabilities of the model, example simulations are presented including ones involving simultaneously propagating multiple hydraulic fractures and producing well interference. The results indicate that both stress shadow effects and producing well interference can alter hydraulic fracture propagation behavior substantially, and shear failure in ductile reservoir rocks can indeed make a significant difference in fracturing pressure and final fracture geometry.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700