Hormonal Contraceptive Effects on the Vaginal Milieu: Microbiota and Immunity
详细信息    查看全文
  • 作者:Jessica Tarleton ; Lisa Haddad…
  • 关键词:Hormonal contraception ; HIV risk ; Progestins ; Vaginal microflora ; Vaginal microbiota ; Genital tract immune cells
  • 刊名:Current Obstetrics and Gynecology Reports
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:5
  • 期:1
  • 页码:20-29
  • 全文大小:369 KB
  • 参考文献:1.Wira CR, Rodriguez-Garcia M, Patel MV. The role of sex hormones in immune protection of the female reproductive tract. Nat Rev Immunol. 2015;15(4):217–30. doi:10.​1038/​nri3819 .PubMedCentral CrossRef PubMed
    2.Murphy K, Irvin SC, Herold BC. Research gaps in defining the biological link between HIV risk and hormonal contraception. Am J Reprod Immunol. 2014;72(2):228–35. doi:10.​1111/​aji.​12209 .PubMedCentral CrossRef PubMed
    3.Beagley KW, Gockel CM. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol. 2003;38(1):13–22.CrossRef PubMed
    4.Sonnex C. Influence of ovarian hormones on urogenital infection. Sex Transm Infect. 1998;74(1):11–9.PubMedCentral CrossRef PubMed
    5.Martin Jr HL, Nyange PM, Richardson BA, Lavreys L, Mandaliya K, Jackson DJ, et al. Hormonal contraception, sexually transmitted diseases, and risk of heterosexual transmission of human immunodeficiency virus type 1. J Infect Dis. 1998;178(4):1053–9.CrossRef PubMed
    6.Baeten JM, Nyange PM, Richardson BA, Lavreys L, Chohan B, Martin Jr HL, et al. Hormonal contraception and risk of sexually transmitted disease acquisition: results from a prospective study. Am J Obstet Gynecol. 2001;185(2):380–5. doi:10.​1067/​mob.​2001.​115862 .CrossRef PubMed
    7.Polis CB, Phillips SJ, Curtis KM, Westreich DJ, Steyn PS, Raymond E, et al. Hormonal contraceptive methods and risk of HIV acquisition in women: a systematic review of epidemiological evidence. Contraception. 2014;90(4):360–90. doi:10.​1016/​j.​contraception.​2014.​07.​009 .CrossRef PubMed
    8.Ralph LJ, McCoy SI, Shiu K, Padian NS. Hormonal contraceptive use and women’s risk of HIV acquisition: a meta-analysis of observational studies. Lancet Infect Dis. 2015;15(2):181–9. doi:10.​1016/​S1473-3099(14)71052-7 .PubMedCentral CrossRef PubMed
    9.•
Noguchi LM, Richardson BA, Baeten JM, Hillier SL, Balkus JE, Chirenje ZM, et al. Risk of HIV-1 acquisition among women who use different types of injectable progestin contraception in South Africa: a prospective cohort study. Lancet HIV. 2015;2(7):e279–87. doi:10.​1016/​S2352-3018(15)00058-2 . Demonstrated lower risk of HIV-1 acquisition in women using NET-EN than DMPA.CrossRef PubMed
10.Morrison CS, Chen PL, Kwok C, Richardson BA, Chipato T, Mugerwa R, et al. Hormonal contraception and HIV acquisition: reanalysis using marginal structural modeling. AIDS. 2010;24(11):1778–81. doi:10.​1097/​QAD.​0b013e32833a2537​ .PubMedCentral CrossRef PubMed
11.Ward H, Ronn M. Contribution of sexually transmitted infections to the sexual transmission of HIV. Curr Opin HIV AIDS. 2010;5(4):305–10. doi:10.​1097/​COH.​0b013e32833a8844​ .PubMedCentral CrossRef PubMed
12.Witkin SS. The vaginal microbiome, vaginal anti-microbial defence mechanisms and the clinical challenge of reducing infection-related preterm birth. BJOG : Int J Obstet Gynaecol. 2015;122(2):213–8. doi:10.​1111/​1471-0528.​13115 .CrossRef
13.Sirota I, Zarek SM, Segars JH. Potential influence of the microbiome on infertility and assisted reproductive technology. Semin Reprod Med. 2014;32(1):35–42. doi:10.​1055/​s-0033-1361821 .PubMedCentral CrossRef PubMed
14.van de Wijgert JH, Borgdorff H, Verhelst R, Crucitti T, Francis S, Verstraelen H, et al. The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS One. 2014;9(8), e105998. doi:10.​1371/​journal.​pone.​0105998 .PubMedCentral CrossRef PubMed
15.Brotman RM. Vaginal microbiome and sexually transmitted infections: an epidemiologic perspective. J Clin Invest. 2011;121(12):4610–7. doi:10.​1172/​JCI57172 .PubMedCentral CrossRef PubMed
16.Cone RA. Vaginal microbiota and sexually transmitted infections that may influence transmission of cell-associated HIV. J Infect Dis. 2014;210 Suppl 3:S616–21. doi:10.​1093/​infdis/​jiu459 .PubMedCentral CrossRef PubMed
17.Hickey RJ, Zhou X, Pierson JD, Ravel J, Forney LJ. Understanding vaginal microbiome complexity from an ecological perspective. Transl Res : J Lab Clin Med. 2012;160(4):267–82. doi:10.​1016/​j.​trsl.​2012.​02.​008 .CrossRef
18.Boskey ER, Cone RA, Whaley KJ, Moench TR. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001;16(9):1809–13.CrossRef PubMed
19.Boskey ER, Telsch KM, Whaley KJ, Moench TR, Cone RA. Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infect Immun. 1999;67(10):5170–5.PubMedCentral PubMed
20.Mirmonsef P, Modur S, Burgad D, Gilbert D, Golub ET, French AL, et al. Exploratory comparison of vaginal glycogen and Lactobacillus levels in premenopausal and postmenopausal women. Menopause. 2015;22(7):702–9. doi:10.​1097/​GME.​0000000000000397​ .CrossRef PubMed
21.Jespers V, Menten J, Smet H, Poradosu S, Abdellati S, Verhelst R, et al. Quantification of bacterial species of the vaginal microbiome in different groups of women, using nucleic acid amplification tests. BMC Microbiol. 2012;12:83. doi:10.​1186/​1471-2180-12-83 .PubMedCentral CrossRef PubMed
22.Srinivasan S, Liu C, Mitchell CM, Fiedler TL, Thomas KK, Agnew KJ, et al. Temporal variability of human vaginal bacteria and relationship with bacterial vaginosis. PLoS One. 2010;5(4), e10197. doi:10.​1371/​journal.​pone.​0010197 .PubMedCentral CrossRef PubMed
23.Brotman RM, Shardell MD, Gajer P, Tracy JK, Zenilman JM, Ravel J, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014;210(11):1723–33. doi:10.​1093/​infdis/​jiu330 .PubMedCentral CrossRef PubMed
24.Bradshaw CS, Vodstrcil LA, Hocking JS, Law M, Pirotta M, Garland SM, et al. Recurrence of bacterial vaginosis is significantly associated with posttreatment sexual activities and hormonal contraceptive use. Clin Infect Dis. 2013;56(6):777–86. doi:10.​1093/​cid/​cis1030 .CrossRef PubMed
25.Calzolari E, Masciangelo R, Milite V, Verteramo R. Bacterial vaginosis and contraceptive methods. Int J Gynecol Obstet. 2000;70(3):341–6. doi:10.​1016/​s0020-7292(00)00217-4 .CrossRef
26.Rifkin SB, Smith MR, Brotman RM, Gindi RM, Erbelding EJ. Hormonal contraception and risk of bacterial vaginosis diagnosis in an observational study of women attending STD clinics in Baltimore. MD Contracept. 2009;80(1):63–7. doi:10.​1016/​j.​contraception.​2009.​01.​008 .CrossRef
27.Holzman C, Leventhal JM, Qiu H, Jones NM, Wang J, Grp BVS. Factors linked to bacterial vaginosis in nonpregnant women. Am J Public Health. 2001;91(10):1664–70. doi:10.​2105/​ajph.​91.​10.​1664 .PubMedCentral CrossRef PubMed
28.Riggs M, Klebanoff M, Nansel T, Zhang J, Schwebke J, Andrews W. Longitudinal association between hormonal contraceptives and bacterial vaginosis in women of reproductive age. Sex Transm Dis. 2007;34(12):954–9. doi:10.​1097/​OLQ.​0b013e31811ed0e4​ .PubMed
29.Mitchell CM, McLemore L, Westerberg K, Astronomo R, Smythe K, Gardella C, et al. Long-term effect of depot medroxyprogesterone acetate on vaginal microbiota, epithelial thickness and HIV target cells. J Infect Dis. 2014;210(4):651–5. doi:10.​1093/​infdis/​jiu176 .PubMedCentral CrossRef PubMed
30.Shoubnikova M, Hellberg D, Nilsson S, Mardh PA. Contraceptive use in women with bacterial vaginosis. Contraception. 1997;55(6):355–8. doi:10.​1016/​s0010-7824(97)00044-9 .CrossRef PubMed
31.Madden T, Grentzer JM, Secura GM, Allsworth JE, Peipert JF. Risk of bacterial vaginosis in users of the intrauterine device: a longitudinal study. Sex Transm Dis. 2012;39(3):217–22. doi:10.​1097/​OLQ.​0b013e31823e68fe​ .PubMedCentral CrossRef PubMed
32.Jacobson JC, Turok DK, Dermish AI, Nygaard IE, Settles ML. Vaginal microbiome changes with levonorgestrel intrauterine system placement. Contraception. 2014;90(2):130–5. doi:10.​1016/​j.​contraception.​2014.​04.​006 .CrossRef PubMed
33.Veres S, Miller L, Burington B. A comparison between the vaginal ring and oral contraceptives. Obstet Gynecol. 2004;104(3):555–63. doi:10.​1097/​01.​AOG.​0000136082.​59644.​13 .CrossRef PubMed
34.De Seta F, Restaino S, De Santo D, Stabile G, Banco R, Busetti M, et al. Effects of hormonal contraception on vaginal flora. Contraception. 2012;86(5):526–9. doi:10.​1016/​j.​contraception.​2012.​02.​012 .CrossRef PubMed
35.Gunawardana M, Moss JA, Smith TJ, Kennedy S, Kopin E, Nguyen C, et al. Microbial biofilms on the surface of intravaginal rings worn in non-human primates. J Med Microbiol. 2011;60(Pt 6):828–37. doi:10.​1099/​jmm.​0.​028225-0 .PubMedCentral CrossRef PubMed
36.Huang Y, Merkatz RB, Hillier SL, Roberts K, Blithe DL, Sitruk-Ware R, et al. Effects of a one year reusable contraceptive vaginal ring on vaginal microflora and the risk of vaginal infection: an open-label prospective evaluation. PLoS One. 2015;10(8), e0134460. doi:10.​1371/​journal.​pone.​0134460 .PubMedCentral CrossRef PubMed
37.•
van de Wijgert JH, Verwijs MC, Turner AN, Morrison CS. Hormonal contraception decreases bacterial vaginosis but oral contraception may increase candidiasis: implications for HIV transmission. AIDS. 2013;27(13):2141–53. doi:10.​1097/​QAD.​0b013e32836290b6​ . This meta-analysis of 36 studies estimated a 10–20% reduction in BV in combined oral contraceptive uses and 18–30% reduction in BV in DMPA users.CrossRef PubMed
38.•
Vodstrcil LA, Hocking JS, Law M, Walker S, Tabrizi SN, Fairley CK, et al. Hormonal contraception is associated with a reduced risk of bacterial vaginosis: a systematic review and meta-analysis. PLoS One. 2013;8(9):e73055. doi:10.​1371/​journal.​pone.​0073055 . This meta-analysis of 55 studies estimated a 25% reduction in incident and prevalent bacterial vaginosis in hormonal contraceptive users compared to non-users.PubMedCentral CrossRef PubMed
39.Nalbandian G, Kovats S. Understanding sex biases in immunity: effects of estrogen on the differentiation and function of antigen-presenting cells. Immunol Res. 2005;31(2):91–106. doi:10.​1385/​IR:​31:​2:​091 .CrossRef PubMed
40.Tan IJ, Peeva E, Zandman-Goddard G. Hormonal modulation of the immune system—a spotlight on the role of progestogens. Autoimmun Rev. 2015;14(6):536–42. doi:10.​1016/​j.​autrev.​2015.​02.​004 .CrossRef PubMed
41.Guleria I, Sayegh MH. Maternal acceptance of the fetus: true human tolerance. J Immunol. 2007;178(6):3345–51.CrossRef PubMed
42.Rodriguez-Garcia M, Patel MV, Wira CR. Innate and adaptive anti-HIV immune responses in the female reproductive tract. J Reprod Immunol. 2013;97(1):74–84. doi:10.​1016/​j.​jri.​2012.​10.​010 .PubMedCentral CrossRef PubMed
43.Tuffrey M, Taylorrobinson D. Progesterone as a key factor in the development of a mouse model for genital-tract infection with chlamydia-trachomatis. Fems Microbiol Lett. 1981;12(2):111–5.CrossRef
44.Parr MB, Kepple L, McDermott MR, Drew MD, Bozzola JJ, Parr EL. A mouse model for studies of mucosal immunity to vaginal infection by herpes-simplex virus type-2. Lab Invest. 1994;70(3):369–80.PubMed
45.Abel K, Rourke T, Lu D, Bost K, McChesney MB, Miller CJ. Abrogation of attenuated lentivirus-induced protection in rhesus macaques by administration of depo-provera before intravaginal challenge with simian immunodeficiency virus mac239. J Infect Dis. 2004;190(9):1697–705. doi:10.​1086/​424600 .PubMedCentral CrossRef PubMed
46.Hild-Petito S, Veazey RS, Larner JM, Reel JR, Blye RP. Effects of two progestin-only contraceptives, Depo-Provera and Norplant-II, on the vaginal epithelium of rhesus monkeys. Aids Res Hum Retrovir. 1998;14:S125–30.PubMed
47.Chandra N, Thurman AR, Anderson S, Cunningham TD, Yousefieh N, Mauck C, et al. Depot medroxyprogesterone acetate increases immune cell numbers and activation markers in human vaginal mucosal tissues. Aids Res Hum Retrovir. 2013;29(3):592–601. doi:10.​1089/​aid.​2012.​0271 .PubMedCentral CrossRef PubMed
48.Bahamondes L, Trevisan M, Andrade L, Marchi NM, Castro S, Diaz J, et al. The effect upon the human vaginal histology of the long-term use of the injectable contraceptive Depo-Provera. Contraception. 2000;62(1):23–7.CrossRef PubMed
49.Bahamondes MV, Castro S, Marchi NM, Marcovici M, Andrade LA, Fernandes A, et al. Human vaginal histology in long-term users of the injectable contraceptive depot-medroxyprogesterone acetate. Contraception. 2014;90(2):117–22. doi:10.​1016/​j.​contraception.​2014.​01.​024 .CrossRef PubMed
50.Mauck CK, Callahan MM, Baker J, Arbogast K, Veazey R, Stock R, et al. The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy. Contraception. 1999;60(1):15–24.CrossRef PubMed
51.Miller L, Patton DL, Meier A, Thwin SS, Hooton TM, Eschenbach DA. Depomedroxyprogesterone-induced hypoestrogenism and changes in vaginal flora and epithelium. Obstet Gynecol. 2000;96(3):431–9.CrossRef PubMed
52.Chappell CA, Rohan LC, Moncla BJ, Wang L, Meyn LA, Bunge K, et al. The effects of reproductive hormones on the physical properties of cervicovaginal fluid. Am J Obstet Gynecol. 2014;211(3):226 e1–7. doi:10.​1016/​j.​ajog.​2014.​03.​041 .CrossRef PubMed
53.Wang L, Koppolu S, Chappell C, Moncla BJ, Hillier SL, Mahal LK. Studying the effects of reproductive hormones and bacterial vaginosis on the glycome of lavage samples from the cervicovaginal cavity. PLoS One. 2015;10(5), e0127021. doi:10.​1371/​journal.​pone.​0127021 .PubMedCentral CrossRef PubMed
54.Shukair SA, Allen SA, Cianci GC, Stieh DJ, Anderson MR, Baig SM, et al. Human cervicovaginal mucus contains an activity that hinders HIV-1 movement. Mucosal Immunol. 2013;6(2):427–34. doi:10.​1038/​mi.​2012.​87 .PubMedCentral CrossRef PubMed
55.Boukari H, Brichacek B, Stratton P, Mahoney SF, Lifson JD, Margolis L, et al. Movements of HIV-virions in human cervical mucus. Biomacromolecules. 2009;10(9):2482–8. doi:10.​1021/​bm900344q .PubMedCentral CrossRef PubMed
56.Zou G, Ochiai H, Huang W, Yang Q, Li C, Wang LX. Chemoenzymatic synthesis and Fcgamma receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcgammaIIIa receptor. J Am Chem Soc. 2011;133(46):18975–91. doi:10.​1021/​ja208390n .PubMedCentral CrossRef PubMed
57.Moncla BJ, Chappell CA, Mahal LK, Debo BM, Meyn LA, Hillier SL. Impact of bacterial vaginosis, as assessed by nugent criteria and hormonal status on glycosidases and lectin binding in cervicovaginal lavage samples. PLoS One. 2015;10(5), e0127091. doi:10.​1371/​journal.​pone.​0127091 .PubMedCentral CrossRef PubMed
58.Chappell CA, Isaacs CE, Xu W, Meyn LA, Uranker K, Dezzutti CS, et al. The effect of menopause on the innate antiviral activity of cervicovaginal lavage. Am J Obstet Gynecol. 2015;213(2):204 e1–6. doi:10.​1016/​j.​ajog.​2015.​03.​045 .CrossRef PubMed
59.Masson L, Mlisana K, Little F, Werner L, Mkhize NN, Ronacher K, et al. Defining genital tract cytokine signatures of sexually transmitted infections and bacterial vaginosis in women at high risk of HIV infection: a cross-sectional study. Sex Transm Infect. 2014;90(8):580–7. doi:10.​1136/​sextrans-2014-051601 .CrossRef PubMed
60.Thurman AR, Kimble T, Herold B, Mesquita PM, Fichorova RN, Dawood HY, et al. Bacterial vaginosis and subclinical markers of genital tract inflammation and mucosal immunity. Aids Res Hum Retrovir. 2015. doi:10.​1089/​aid.​2015.​0006 .PubMed
61.•
Morrison C, Fichorova RN, Mauck C, Chen PL, Kwok C, Chipato T, et al. Cervical inflammation and immunity associated with hormonal contraception, pregnancy, and HIV-1 seroconversion. J Acquir Immune Defic Syndr. 2014;66(2):109–17. doi:10.​1097/​QAI.​0000000000000103​ . A nested case control study of hormonal contraceptive users showed that higher cervicovaginal fluid RANTES levels and lower SLPI levels were associated with HIV seroconversion, and that higher cervicovaginal RANTES levels were seen in DMPA users.PubMed
62.Caux C, Ait-Yahia S, Chemin K, de Bouteiller O, Dieu-Nosjean MC, Homey B, et al. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol. 2000;22(4):345–69.CrossRef PubMed
63.Wahl SM, McNeely TB, Janoff EN, Shugars D, Worley P, Tucker C, et al. Secretory leukocyte protease inhibitor (SLPI) in mucosal fluids inhibits HIV-I. Oral Dis. 1997;3 Suppl 1:S64–9.CrossRef PubMed
64.Deese J, Masson L, Miller W, Cohen M, Morrison C, Wang M, et al. Injectable progestin-only contraception is associated with increased levels of pro-inflammatory cytokines in the female genital tract. Am J Reprod Immunol. 2015;74(4):357–67. doi:10.​1111/​aji.​12415 .CrossRef PubMed
65.Govender Y, Avenant C, Verhoog NJ, Ray RM, Grantham NJ, Africander D, et al. The injectable-only contraceptive medroxyprogesterone acetate, unlike norethisterone acetate and progesterone, regulates inflammatory genes in endocervical cells via the glucocorticoid receptor. PLoS One. 2014;9(5), e96497. doi:10.​1371/​journal.​pone.​0096497 .PubMedCentral CrossRef PubMed
66.Michel KG, Huijbregts RP, Gleason JL, Richter HE, Hel Z. Effect of hormonal contraception on the function of plasmacytoid dendritic cells and distribution of immune cell populations in the female reproductive tract. J Acquir Immune Defic Syndr. 2015;68(5):511–8. doi:10.​1097/​QAI.​0000000000000531​ .CrossRef PubMed
67.Guthrie BL, Introini A, Roxby AC, Choi RY, Bosire R, Lohman-Payne B, et al. Depot medroxyprogesterone acetate use is associated with elevated innate immune effector molecules in cervicovaginal secretions of HIV-1-uninfected women. J Acquir Immune Defic Syndr. 2015;69(1):1–10. doi:10.​1097/​QAI.​0000000000000533​ .CrossRef PubMed
68.Huijbregts RPH, Helton ES, Michel KG, Sabbaj S, Richter HE, Goepfert PA, et al. Hormonal contraception and HIV-1 Infection: medroxyprogesterone acetate suppresses innate and adaptive immune mechanisms. Endocrinology. 2013;154(3):1282–95. doi:10.​1210/​en.​2012-1850 .PubMedCentral CrossRef PubMed
69.Achilles SL, Creinin MD, Stoner KA, Chen BA, Meyn L, Hillier SL. Changes in genital tract immune cell populations after initiation of intrauterine contraception. Am J Obstet Gynecol. 2014;211(5):489 e1–9. doi:10.​1016/​j.​ajog.​2014.​05.​016 .CrossRef PubMed
70.Coleman JS, Mwachari C, Balkus J, Sanguli L, Muliro A, Agnew K, et al. Effect of the levonorgestrel intrauterine device on genital HIV-1 RNA shedding among HIV-1-infected women not taking antiretroviral therapy in Nairobi. Kenya J Acquir Immune Defic Syndr. 2013;63(2):245–8. doi:10.​1097/​QAI.​0b013e31828decf8​ .CrossRef PubMed
71.Ngcapu S, Masson L, Sibeko S, Werner L, McKinnon LR, Mlisana K, et al. Lower concentrations of chemotactic cytokines and soluble innate factors in the lower female genital tract associated with the use of injectable hormonal contraceptive. J Reprod Immunol. 2015;110:14–21. doi:10.​1016/​j.​jri.​2015.​03.​007 .CrossRef PubMed
72.Huijbregts RP, Michel KG, Hel Z. Effect of progestins on immunity: medroxyprogesterone but not norethisterone or levonorgestrel suppresses the function of T cells and pDCs. Contraception. 2014;90(2):123–9. doi:10.​1016/​j.​contraception.​2014.​02.​006 .CrossRef PubMed
73.Tomasicchio M, Avenant C, Du Toit A, Ray RM, Hapgood JP. The progestin-only contraceptive medroxyprogesterone acetate, but not norethisterone acetate, enhances HIV-1 Vpr-mediated apoptosis in human CD4+ T cells through the glucocorticoid receptor. PLoS One. 2013;8(5), e62895. doi:10.​1371/​journal.​pone.​0062895 .PubMedCentral CrossRef PubMed
74.Cates W. The Evidence for Contraceptive Options and HIV Outcomes Trial (ECHO). Clinicaltrials.gov. 2015. https://​clinicaltrials.​gov/​ct2/​show/​NCT02550067 . Accessed 26 Oct 2015.
  • 作者单位:Jessica Tarleton (1)
    Lisa Haddad (2)
    Sharon L. Achilles (1) (3)

    1. Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, 300 Halket St, Pittsburgh, PA, 15213, USA
    2. Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
    3. Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
  • 刊物主题:Obstetrics/Perinatology; Maternal and Child Health; Medicine/Public Health, general; Oncology;
  • 出版者:Springer US
  • ISSN:2161-3303
  • 文摘
    Hormonal contraceptives may influence the immunological and microbiological milieu of the vagina and alter the risk of acquisition of sexually transmitted infections (STIs) and human immunodeficiency virus (HIV). Most studies demonstrate more normal vaginal flora and less bacterial vaginosis in hormonal contraceptive users compared to non-users, suggesting that contraceptive-induced alteration in vaginal microbiota is an unlikely mechanism for increased risk of STI/HIV acquisition. Measured impacts of hormonal contraceptive use on the presence and activity of vaginal immune cells and vaginal cytokine secretion varies depending on the experimental model, progestogen used, contraceptive delivery method, and length of use of the method, limiting cohesive conclusions. Further study is needed to evaluate the effects of specific progestogens, delivery methods, and long-term use of contraceptives, particularly intrauterine devices and implants, on innate and adaptive immune cells and function in order to ultimately understand impacts on susceptibility to sexually transmitted infections including HIV.

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700