Topography and collateralization of dopaminergic projections to primary motor cortex in rats
详细信息    查看全文
  • 作者:Jonas A. Hosp (1) (2)
    Helen E. Nolan (1) (2)
    Andreas R. Luft (1) (2) (3)

    1. Clinical Neurorehabilitation
    ; Department of Neurology ; University of Zurich ; Frauenklinikstrasse 26 ; 8091 ; Zurich ; Switzerland
    2. Rehabilitation Initiative and Technology Center Zurich
    ; RITZ ; Zurich ; Switzerland
    3. Department of Neurology
    ; Johns Hopkins University ; 1550 Orleans Street ; Baltimore ; MD ; 21231 ; USA
  • 关键词:Motor cortex ; Dopamine ; VTA ; Rat
  • 刊名:Experimental Brain Research
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:233
  • 期:5
  • 页码:1365-1375
  • 全文大小:1,376 KB
  • 参考文献:1. Arias-Carrion, O, Stamelou, M, Murillo-Rodriguez, E, Menendez-Gonzalez, M, Poppel, E (2010) Dopaminergic reward system: a short integrative review. Int Arch Med 3: pp. 24 CrossRef
    2. Awenowicz, PW, Porter, LL (2002) Local application of dopamine inhibits pyramidal tract neuron activity in the rodent motor cortex. J Neurophysiol 88: pp. 3439-3451 CrossRef
    3. Berger, B, Gaspar, P, Verney, C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14: pp. 21-27 CrossRef
    4. Bjorklund, A, Dunnett, SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30: pp. 194-202 CrossRef
    5. Bromberg-Martin, ES, Matsumoto, M, Hikosaka, O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68: pp. 815-834 CrossRef
    6. Choi, D, Li, D, Raisman, G (2002) Fluorescent retrograde neuronal tracers that label the rat facial nucleus: a comparison of Fast Blue, Fluoro-ruby, Fluoro-emerald, Fluoro-gold and Dil. J Neurosci Methods 117: pp. 167-172 CrossRef
    7. Conner, JM, Culberson, A, Packowski, C, Chiba, AA, Tuszynski, MH (2003) Lesions of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38: pp. 819-829 CrossRef
    8. Dahlstrom, A, Fuxe, K (1964) Localization of monoamines in the lower brain stem. Experientia 20: pp. 398-399 CrossRef
    9. Dawson, TM, Barone, P, Sidhu, A, Wamsley, JK, Chase, TN (1986) Quantitative autoradiographic localization of D-1 dopamine receptors in the rat brain: use of the iodinated ligand [125I]SCH 23982. Neurosci Lett 68: pp. 261-266 CrossRef
    10. Dawson, TM, Gehlert, DR, Wamsley, JK (1986) Quantitative autoradiographic localization of central dopamine D-1 and D-2 receptors. Adv Exp Med Biol 204: pp. 93-118 CrossRef
    11. Descarries, L, Lemay, B, Doucet, G, Berger, B (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21: pp. 807-824 CrossRef
    12. Fallon, JH (1981) Collateralization of monoamine neurons: mesotelencephalic dopamine projections to caudate, septum, and frontal cortex. J Neurosci 1: pp. 1361-1368
    13. German, DC, Manaye, KF (1993) Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol 331: pp. 297-309 CrossRef
    14. Hosp JA, Luft AR (2013) Dopaminergic meso-cortical projections to M1: role in motor learning and motor cortex plasticity. Front Neurol 4:145. doi:10.3389/fneur.2013.00145
    15. Hosp, JA, Molina-Luna, K, Hertler, B, Atiemo, CO, Luft, AR (2009) Dopaminergic modulation of motor maps in rat motor cortex: an in vivo study. Neuroscience 159: pp. 692-700 CrossRef
    16. Hosp, JA, Pekanovic, A, Rioult-Pedotti, MS, Luft, AR (2011) Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 31: pp. 2481-2487 CrossRef
    17. Jiang, X, Johnson, RR, Burkhalter, A (1993) Visualization of dendritic morphology of cortical projection neurons by retrograde axonal tracing. J Neurosci Methods 50: pp. 45-60 CrossRef
    18. Kehr, W, Lindqvist, M, Carlsson, A (1976) Distribution of dopamine in the rat cerebral cortex. J Neural Transm 38: pp. 173-180 CrossRef
    19. Kleim, JA, Lussnig, E, Schwarz, ER, Comery, TA, Greenough, WT (1996) Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 16: pp. 4529-4535
    20. Kobbert, C, Apps, R, Bechmann, I, Lanciego, JL, Mey, J, Thanos, S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62: pp. 327-351 CrossRef
    21. Leonard, CM (1969) The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res 12: pp. 321-343 CrossRef
    22. Luby-Phelps, K, Taylor, DL, Lanni, F (1986) Probing the structure of cytoplasm. J Cell Biol 102: pp. 2015-2022 CrossRef
    23. Luft, AR, Schwarz, S (2009) Dopaminergic signals in primary motor cortex. Int J Dev Neurosci 27: pp. 415-421 CrossRef
    24. Luft, AR, Buitrago, MM, Ringer, T, Dichgans, J, Schulz, JB (2004) Motor skill learning depends on protein synthesis in motor cortex after training. J Neurosci 24: pp. 6515-6520 CrossRef
    25. Margolis, EB, Coker, AR, Driscoll, JR, Lemaitre, AI, Fields, HL (2010) Reliability in the identification of midbrain dopamine neurons. PLoS ONE 5: pp. e15222 CrossRef
    26. Martres, MP, Bouthenet, ML, Sales, N, Sokoloff, P, Schwartz, JC (1985) Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpride, a highly selective ligand. Science 228: pp. 752-755 CrossRef
    27. Molina-Luna, K, Pekanovic, A, Rohrich, S, Hertler, B, Schubring-Giese, M, Rioult-Pedotti, MS, Luft, AR (2009) Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS ONE 4: pp. e7082 CrossRef
    28. Monfils, MH, Plautz, EJ, Kleim, JA (2005) In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist 11: pp. 471-483 CrossRef
    29. Novikova, L, Novikov, L, Kellerth, JO (1997) Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates. J Neurosci Methods 74: pp. 9-15 CrossRef
    30. Paxinos, G, Watson, C (1997) The rat brain in stereotaxic coordinates. Academic Press, Waltham
    31. Preuss, TM (1995) Do rats have prefrontal cortex? The Rose鈥揥oolsey鈥揂kert program reconsidered. J Cogn Neurosci 7: pp. 1-24 CrossRef
    32. Reiner, A, Veenman, CL, Medina, L, Jiao, Y, Mar, N, Honig, MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103: pp. 23-37 CrossRef
    33. Rioult-Pedotti, MS, Friedman, D, Donoghue, JP (2000) Learning-induced LTP in neocortex. Science 290: pp. 533-536 CrossRef
    34. Rose, JE, Woolsey, CN (1948) The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res Publ Assoc Res Nerv Ment Dis 27: pp. 210-232
    35. Schultz, W (2007) Behavioral dopamine signals. Trends Neurosci 30: pp. 203-210 CrossRef
    36. Schultz, W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30: pp. 259-288 CrossRef
    37. Swanson, LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9: pp. 321-353 CrossRef
    38. Takada, M, Hattori, T (1987) Organization of ventral tegmental area cells projecting to the occipital cortex and forebrain in the rat. Brain Res 418: pp. 27-33 CrossRef
    39. Uylings, HB, Groenewegen, HJ, Kolb, B (2003) Do rats have a prefrontal cortex?. Behav Brain Res 146: pp. 3-17 CrossRef
    40. Vitrac, C, Peron, S, Frappe, I, Fernagut, PO, Jaber, M, Gaillard, A, Benoit-Marand, M (2014) Dopamine control of pyramidal neuron activity in the primary motor cortex via D2 receptors. Front Neural Circuits 8: pp. 13 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1106
文摘
Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700