Restoration of lost frequency in OpenPET imaging: comparison between the method of convex projections and the maximum likelihood expectation maximization method
详细信息    查看全文
  • 作者:Hideaki Tashima (1)
    Takayuki Katsunuma (2)
    Hiroyuki Kudo (3)
    Hideo Murayama (1)
    Takashi Obi (4)
    Mikio Suga (2)
    Taiga Yamaya (1)
  • 关键词:OpenPET ; Positron emission tomography ; Iterative methods ; Maximum likelihood expectation maximization ; Method of convex projections ; Projections onto convex sets
  • 刊名:Radiological Physics and Technology
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:7
  • 期:2
  • 页码:329-339
  • 全文大小:1,576 KB
  • 参考文献:1. Yamaya T, Inaniwa T, Minohara S, Yoshida E, Inadama N, Nishikido F, et al. A proposal of an open PET geometry. Phys Med Biol. 2008;53:757-3. CrossRef
    2. Yamaya T, Yoshida E, Inaniwa T, Sato S, Nakajima Y, Wakizaka H, et al. Development of a small prototype for a proof-of-concept of OpenPET imaging. Phys Med Biol. 2011;56:1123-7. CrossRef
    3. Yamaya T, Inaniwa T, Mori S, Furukawa T, Minohara S, Yoshida E, et al. Imaging simulations of an ‘OpenPET-geometry with shifting detector rings. Radiol Phys Technol. 2008;2:62-. CrossRef
    4. Yamaya T, Inaniwa T, Yoshida E, Nishikido F, Shibuya K, Inadama N, et al. Simulation studies of a new ‘OpenPET-geometry based on a quad unit of detector rings. Phys Med Biol. 2009;54:1223-3. CrossRef
    5. Yamaya T, Yoshida E, Inadama N, et al. A multiplex “OpenPET-geometry to extend axial FOV without increasing the number of detectors. IEEE Trans Nucl Sci. 2009;56:2644-0. CrossRef
    6. Yoshida E, Yamaya T, Nishikido F, Inadama N, Murayama H. Basic study of entire whole-body PET scanners based on the OpenPET geometry. Nucl Instrum Methods Phys Res A. 2010;621:576-0. CrossRef
    7. Tashima H, Yoshida E, Kinouchi S, Nishikido F, Inadama N, Murayama H, Suga M, Haneishi H, Yamaya T. Real-time imaging system for the OpenPET. IEEE Trans Nucl Sci. 2012;59(1):40-. CrossRef
    8. Iseki Y, Mizuno H, Futami Y, Tomitani T, Kanai T, Kanazawa M, Kitagawa A, Murakami T, Nishio T, Suda M. Positron camera for range verification of heavy-ion radiotherapy. Nucl Instrum Methods Phys Res A. 2003;515:840-. CrossRef
    9. Iseki Y, Kanai T, Kanazawa M, Kitagawa A, Mizuno H, Tomitani T, et al. Range verification system using positron emitting beams for heavy-ion radiotherapy. Phys Med Biol. 2004;49:3179-5. CrossRef
    10. Nishio T, Ogino T, Nomura K, Uchida H. Dose-volume delivery guided proton therapy using beam on-line PET system. Med Phys. 2006;33:4190-. CrossRef
    11. Enghardt W, Crespo P, Fiedler F, Hinz R, Parodi K, Pawelke J, et al. Charged hadron tumour therapy monitoring by means of PET. Nucl Instrum Methods Phys Res A. 2004;525:284-. CrossRef
    12. Crespo P, Shakirin G, Enghardt W. On the detector arrangement for in-beam PET for hadron therapy monitoring. Phys Med Biol. 2006;51:2143-3. CrossRef
    13. Fiedler F, Shakirin G, Skowron J, Braess H, Crespo P, Kunath D, et al. On the effectiveness of ion range determination from in-beam PET data. Phys Med Biol. 2010;55:1989-8. CrossRef
    14. Inaniwa T, Kohno T, Tomitani T, et al. Experimental determination of particle range and dose distribution in thick targets through fragmentation reactions of stable heavy ions. Phys Med Biol. 2006;51:4129-6. CrossRef
    15. Tanaka E, Amo Y. A Fourier rebinning algorithm incorporating spectral transfer efficiency for 3D PET. Phys Med Biol. 1998;43:739-6. CrossRef
    16. Orlov SS. Theory of three-dimensional reconstruction. 1. Conditions for a complete set of projections. Soviet Phys Crystallogr. 1975;20:312-.
    17. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag. 1982;MI-1:113-2.
    18. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13:601-. CrossRef
    19. Youla DC, Webb H. Image restoration by the method of convex projections: part 1—theory. IEEE Trans Med Imag. 1982;MI-1:81-4.
    20. Tuy H. Reconstruction of a three-dimensional object from limited range of views. J Math Anal Appl. 1981;80:598-16. CrossRef
    21. Lent A, Tuy H. An iterative method for the extrapolation of band-limited functions. J Math Anal Appl. 1981;83:554-5. CrossRef
    22. Kudo H, Saito T. Sinogram recovery with the method of convex projections for limited-data reconstruction in computed tomography. J Opt Soc Am A. 1991;8:1148-0. CrossRef
    23. Bendriem B, Townsend DW, editors. The theory and practice of 3D PET, Dordrecht. Netherlands: Kluwer Academic Publishers; 1998.
    24. Tanaka E. Analytical methods of three-dimensional image reconstruction. Med Imag Tech. 2000;18:33-.
    25. Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol. 2008;53:4777-07. CrossRef
    26. Knutsson HE, Edholm P, Granlund GH, Petersson CU. Ectomography—a new radiographic reconstruction method—I. Theory and error estimates. IEEE Trans Biol Eng. 1980;27:640-. CrossRef
    27. Dale S, Edholm PE, Hellstr?m LG, Larsson S. Ectomography—a tomographic method for gamma camera imaging. Phys Med Biol. 1985;30:1237-9. CrossRef
  • 作者单位:Hideaki Tashima (1)
    Takayuki Katsunuma (2)
    Hiroyuki Kudo (3)
    Hideo Murayama (1)
    Takashi Obi (4)
    Mikio Suga (2)
    Taiga Yamaya (1)

    1. Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
    2. Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
    3. Division of Information Engineering, Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8573, Japan
    4. Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G2-2 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
  • ISSN:1865-0341
文摘
We are developing a new PET scanner based on the “OpenPET-geometry, which consists of two detector rings separated by a gap. One item to which attention must be paid is that OpenPET image reconstruction is classified into an incomplete inverse problem, where low-frequency components are truncated. In our previous simulations and experiments, however, the OpenPET imaging was made feasible by application of iterative image reconstruction methods. Therefore, we expect that iterative methods have a restorative effect to compensate for the lost frequency. There are two types of reconstruction methods for improving image quality when data truncation exists: one is the iterative methods such as the maximum-likelihood expectation maximization (ML-EM) and the other is an analytical image reconstruction method followed by the method of convex projections, which has not been employed for the OpenPET. In this study, therefore, we propose a method for applying the latter approach to the OpenPET image reconstruction and compare it with the ML-EM. We found that the proposed analytical method could reduce the occurrence of image artifacts caused by the lost frequency. A similar tendency for this restoration effect was observed in ML-EM image reconstruction where no additional restoration method was applied. Therefore, we concluded that the method of convex projections and the ML-EM had a similar restoration effect to compensate for the lost frequency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700