Genesis of volatile components at Saturn’s regular satellites. Origin of Titan’s atmosphere
详细信息    查看全文
  • 作者:V. A. Dorofeeva
  • 关键词:Jupiter’s and Saturn’s regular satellites ; comets ; volatile components ; Titan’s atmosphere ; plumes of Enceladus ; protoplanetary circumsolar disk ; protosatellite disks of giant planets
  • 刊名:Geochemistry International
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:54
  • 期:1
  • 页码:7-26
  • 全文大小:719 KB
  • 参考文献:M. M. Abbas, H. Kandadi, A. LeClair, R. K. Achterberg, F. M. Flasar, V. G. Kunde, B. J. Conrath, G. Bjoraker, J. Brasunas, R. Carlson, D. E. Jennings, and M. Segura, “D/H ratio of Titan from observations of the Cassini/Composite infrared spectrometer,” Astrophys. J. 708, 342–353 (2010).CrossRef
    T. Albertsson, D. Semenov, and Th. Henning, “Chemodynamical deuterium fractionation in the early solar nebula: the origin of water on Earth and in asteroids and comets,” Astrophys. J., 784 (1), article id. 39 (2014).CrossRef
    C. M. Alexander, R. Bowden, M. L. Fogel, K. T. Howard, C. D. Herd, and L. R. Nittler, “The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets,” Science 337 (6095), 721–724 (2012).CrossRef
    K. Altwegg, H. Balsiger, A. Bar-Nun, J. J. Berthelier, et al., “67P/Churymov-Gerasimenko, a Jupiter family comet with a high D/H ratio,” Science 347 (6220), (2015).
    S. K. Atreya, “The significance of trace constituents in the Solar System,” Faraday Discuss 147, 9–29 (2010).CrossRef
    S. K. Atreya, T. M. Donahue, and W. R. Kuhn, “Evolution of a nitrogen atmosphere on Titan,” Science 201, 611–613 (1978).CrossRef
    R.-M. Baland, G. Tobie, A. Lefevre, and T. van Hoolst, “Titan’s internal structure inferred from its gravity field, shape, and rotation state,” Icarus 237, 29–41 (2014).CrossRef
    A. A. Berezhnoi, “The role of photochemical processes in evolution of the isotopic composition of the atmosphere of Titan,” Solar Syst. Res. 44 (6), 530–538 (2010).CrossRef
    Bruno Bézard, Conor A. Nixon, Isabelle Kleiner, and Donald E. Jennings, “Detection of 13CH3D on Titan,” Icarus, 191 (1), 397–400 (2007).CrossRef
    D. Bockelee-Morvan, N. Biver, J. Crovisier, D. C. Lis, P. Hartogh, R. Moreno, M. de Val-Borro, G. A. Blake, S. Szutowicz, J. Boissier, J. Cernicharo, S. B. Charnley, M. Combi, M. A. Cordiner, T. de Graauw, et al. “Searches for HCl and HF in comets 103P/Hartley 2 and C/2009 P1 (Garradd) with the Herschel Space Observatory,” Astron. Astrophys. 562, A5 (2014).CrossRef
    Borisov M. V. and Shvarov, Yu. V. Thermodynamics of Geochemical Processes (Mosk. Gos. Univ., Moscow, 1992) [in Russian].
    G. Briani, N. Fray, H. Cottin, Y. Benilan, M.-C. Gazeau, and S. Perrier, “HMT production and sublimation during thermal process of cometary organic analogs. Implications for its detection with the ROSETTA instruments,” Icarus 226, 541–551 (2013).CrossRef
    R. M. Canup, “Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite,” Nature 468, 943–946 (2010).CrossRef
    A. L. Cochran, W. D. Cochran, and E. S. Barker, “N2 and CO in comets 122P/1995 S1 (deVico) and C/1995 O1 (Hale–Bopp),” Icarus 146, 583–593 (2000).CrossRef
    D. R. Davis, “Catastrophic disruption in the Solar system: asteroid collisional history, origin of Hirayama families and disruption of small satellites,” J. Italian Astronom. Soc. 57 (1), 87–101 (1986).
    L. Dones, P. R. Weissman, H. F. Levison, and M. J. Duncan, “Oort cloud formation and dynamics,” in Comets II, Ed. by M. C. Festou, H. U. Keller, H. A. Weaver (Univ. Arizona Press, 2005), pp. 153–174.
    V. A. Dorofeeva and S. P. Borunov, “Chemical and isotope composition of the atmospheres of the giant planets,” Geokhimiya, No. 9, 1219–1231 (1990).
    V. A. Dorofeeva and E. V. Cherkasova, “Origin of N2 in the Titan atmosphere—thermodynamic model,” Eksp. Geokhimiya, No. 2, 33–38 (2014).
    V. A. Dorofeeva and A. B. Makalkin, Evolution of the Early Solar System (Editorial URSS, Moscow, 2004) [in Russian].
    V. A. Dorofeeva, “Structure, Composition, and conditions of the formation of rocky-icy planetesimals in the outer region of the near-solar gas-dust protoplanetary disk: constraints for models,” in Study of Solar System Cosmic Milestones (Inst. Kosm. Issled. Ross. Akad. Nauk, Moscow, 2015), pp. 400–424.
    A. N. Dunaeva, V. A. Kronrod, and O. L. Kuskov, “Models of Titan with water–ice shell, rock–ice mantle, and constraints on the rock–iron component composition,” Dokl. Earth Sci. 454 (1), 89–93 (2014).CrossRef
    Th. Encrenaz, P. Drossart, H. Feuchtgruber, E. Lellouch, B. Bézard, T. Fouchet, and S. K. Atreya, “The atmospheric composition and structure of Jupiter and Saturn from ISO observations: a preliminary review,” Planet. Space Sci 47 (10–11), 1225–1242 (1999).CrossRef
    H. Feuchtgruber, E. Lellouch, G. Orton, T. de Graauw, B. vandenbussche, B. Swinyard, R. Moreno, C. Jarchow, F. Billebaud, T. Cavaliè, S. Sidher, and P. Hartogh, “The D/H ratio in the atmospheres of Uranus and Neptune from Herschel–PACS observations,” Astron. Astrophys. 551, A126 (2013).CrossRef
    L. N. Fletcher, G. S. Orton, N. A. Teanby, P. G. J. Irwin, and G. L. Bjoraker, “Methane and its isotopologues on Saturn from Cassini/CIRS observations,” Icarus 199, 351–367 (2009).CrossRef
    J. Geiss and G. Gloeckler, “Isotopic composition of H, HE and NE in the protosolar cloud,” Sp. Sci. Rev. 106, 3–18 (2003).CrossRef
    E. L. Gibb, D. C. B. Whittet, W. A. Schutte, A. C. A. Boogert, J. E. Chiar, P. Ehrenfreund, P. A. Gerakines, J. V. Keane, A. G. G. M. Tielens, E. F. van Dishoeck, and O. Kerkhof, “An inventory of interstellar ices toward the embedded protostar W33A,” Astrophys. J. 536 (1), 347–356 (2000).CrossRef
    C. R. Glein, S. J. Desch, and E. L. Shock, “The absence of endogenic methane on Titan and its implications for the origin of atmospheric nitrogen,” Icarus 204 (2), 637–644 (2009).CrossRef
    C. R. Glein, “Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan,” Icarus 250, 570–586 (2015).CrossRef
    M. J. Griffin, D. A. Naylor, G. R. Davis, P. Ade, P. G. Oldham, B. M. Swinyard, D. Gautier, E. Lellouch, G. S. Orton, T. Encrenaz, et al., “First detection of the 56-µm rotational line of HD in Saturn’s atmosphere,” Astron. Astrophys 315, L389–L392 (1996)
    K. P. Hand and R. W. Carlson, “Europa’s surface color suggests an ocean rich with sodium chloride,” Geophys. Res. Lett. 42 (9), 3174–3178 (2015).CrossRef
    M. S. Hanner and J. P. Bradley, Composition and Mineralogy of Cometary Dust. Comets II, Ed. by M. Festou et al. (Univ. of Arizona, Tucson, 2005), pp. 555–564.
    P. Hartogh, C. Lis Dariusz, D. Bockelèe-Morvan, M. de Val-Borro, N. Biver, M. Küppers, M. Emprechtinger, E. A. Bergin, J. Crovisier, M. Rengel, R. Moreno, S. Szutowicz, and G. A. Blake, “Ocean-like water in the Jupiter-family comet 103P/Hartley 2,” Nature 478 (7368), 218–220 (2011).CrossRef
    R. Hayatsu, R. E. Winans, R. G. Scott, R. L. McBeth, L. P. Moore, and M. H. Studier, “Phenolic ethers in the organic polymer of Murchison meteorite,” Science 207, 1202–1204 (1980).CrossRef
    A. G. Hayes, R. J. Michaelides, E. P. Turtle, J. W. Barnes, J. M. Soderblom, M. Mastrogiuseppe, R. D. Lorenz, R. L. Kirk, and J. I. Lunine, “The distribution and volume of Titan’s hydrocarbon lakes and seas,” Lunar Planet. Sci. Conf 45, 2341 pdf (2014).
    P. O. Hayne, T. B. McCord, and C. Sotin, “Titan’s surface composition and atmospheric transmission with solar occultation measurements by Cassini VIMS,” Icarus 243, 158–172 (2014).CrossRef
    H. C. Helgeson, “Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic relations,” Geochim. Cosmochim. Acta 32 (8), 853–877 (1968).CrossRef
    P. Hily-Blant, L. Bonal, A. Faure, and E. Quirico, “The 15N-enrichment in dark clouds and Solar System objects,” Icarus 223 (1), 582–590 (2013).CrossRef
    H.-W. Hsu, F. Postberg, Y. Sekine, T. Shibuya, S. Kempf, M. Horänyi, A. Juhäsz, N. Altobelli, K. Suzuki, Y. Masaki, T. Kuwatani, S. Tashibana, S.-I. Sirono, G. Moragas-Klostermeyer, and R. Srama, “Ongoing hydrothermal activities within Enceladus,” Nature 519 (7542), 207–210 (2015).CrossRef
    L. Iess, D. J. Stevenson, M. Parisi, D. Hemingway, R. A. Jacobson, J. I. Lunine, F. Nimmo, J. W. Armstrong, S. W. Asmar, M. Ducci, and P. Tortora, “The gravity field and interior structure of Enceladus,” Science 344 (6179), 78–80 (2014).CrossRef
    J. J. Kavelaars, O. Mousis, J.-M. Petit, and H. A. Weaver, “On the formation location of Uranus and Neptune as constrained by dynamical and chemical models of comets,” Astrophys. J. Lett. 734 (2), article id. L30 (2011).CrossRef
    H. Kawakita, R. N. Dello, R. Vervack, Jr. H. Kobayashi, M. A. DiSanti, C. Opitom, E. Jehin, H. A. Weaver, A. L. Cochran, W. M. Harris, D. Bockelèe-Morvan, N. Biver, J. Crovisier, A. J. McKay, J. Manfroid, et al., “Extremely organic-rich coma of Comet C/2010 G2 (Hill) during its outburst in 2012,” Astrophys. J. 788 (2), article id. 110 (2014).CrossRef
    H. Kawakita, H. Kobayashi, N. Dello Russo, R. J. Vervack, M. Hashimoto, H. A. Weaver, L. M. Carey, A. L. Cochran, W. M. Harris, D. BockeleeMorvan, N. Biver, J. Crovisier, and A. J. McKay, “Parent volatiles in Comet 103P/Hartley 2 observed by Keck II with NIRSPEC during the 2010 apparition,” Icarus 222, 723–733 (2013).CrossRef
    S. Kempf, U. Beckmann, and J. Schmidt, “How the Enceladus dust plume feeds Saturn’s E ring,” Icarus 206 (2), 446–457 (2010).CrossRef
    O. L. Kuskov and V. A. Kronrod, “Internal structure of Europa and Callisto,” Icarus 177, 550–569 (2005).CrossRef
    O. L. Kuskov, V. A. Dorofeeva V. A. Kronrod, and A. B. Makalkin, “Jupiter and Saturn Systems: Formation, Composition, and Inner Structure of Large Satellites (LKI, Moscow, 2009) [in Russian].
    A. Lefevre, G. Tobie, G. Choblet, and O. Cadek, “Structure and dynamics of Titan’s outer icy shell constrained from Cassini data, Icarus 237, 16–28 (2014).CrossRef
    E. Lellouch, B. Bezard, T. Fouchet, H. Feuchtgruber, T. Encrenaz, and T. de Graauw, “The deuterium abundance in Jupiter and Saturn from ISO-SWS observations,” Astron. Astrophys. 370, 610–622 (2001).CrossRef
    E. Lellouch, C. de Bergh, B. Sicardy, H.-U. Kaufl, and A. Smette, “The tenuous atmospheres of Pluto and Triton explored by CRIRES on the VLT,” The Messenger 145, 20–23 (2011).
    H. F. Levison and M. J. Duncan, “From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets,” Icarus 127, 13–32 (1997).CrossRef
    J. L. Linsky, “Atomic deuterium/hydrogen in the galaxy,” Space Sci. Rev. 106 (1), 49–60 (2003).CrossRef
    D. C. Lis, N. Biver, D. Bockelèe-Morvan, P. Hartogh, E. A. Bergin, G. A. Blake, J. Crovisier, M. de Val-Borro, E. Jehin, M. Küppers, J. Manfroid, R. Moreno, M. Rengel, and S. Szutowicz, “A Herschel study of d/h in water in the Jupiter-family comet 45P/Honda-Mrkos-Pajdusáková and prospects for D/H measurements with CCAT,” Astrophys. J. Lett. 774 (1), L3 (2013).CrossRef
    K. Lodders, “Solar system abundances and condensation temperatures of the elements,” Astrophys. J. 591, 1220–1247 (2003).CrossRef
    K. Lodders, “Solar system abundances of the elements,” in Astrophysics and Space Science Proceedings, (Springer-Verlag, Berlin–Heidelberg, 2010), pp. 379–417.
    K. Magee-Sauer, M. J. Mumma, M. A. DiSanti, N. Dello Russo, E. L. Gibb, B. P. Bonev, and G. L. Villanueva, “The organic composition of Comet C/2001 A2 (LINEAR) I. Evidence for an unusual organic chemistry,” Icarus 194, 347–356 (2008).CrossRef
    P. R. Mahaffy, T. M. Donahue, S. K. Atreya, T. C. Owen, and H. B. Niemann, “Galileo probe measurements of D/H and 3He/4He in Jupiter’s atmosphere,” Space Sci. Rev. 84 (1–2), 251–263 (1998).CrossRef
    P. R. Mahaffy, H. B. Niemann, and J. E. Demick “Deep atmosphere ammonia mixing ratio at Jupiter from the Galileo probe mass spectrometer,” Bull. Astronom. Soc. 31, (4), 1154, #52.02 (1999).
    A. B. Makalkin and V. A. Dorofeeva, “Accretion disks around Jupiter and Saturn at the stage of regular satellite formation,” Solar Syst. Res. 48 (1), 62–78 (2014).CrossRef
    A. B. Makalkin and V. A. Dorofeeva, “Temperature distribution in the solar nebula at successive stages of its evolution,” Solar Syst. Res. 43 (6), 508–532 (2009).CrossRef
    A. B. Makalkin and I. N. Ziglina, “Formation of planetesimals in the trans-Neptunian region of the protoplanetary disk,” Solar Syst. Res. 38 (4), 288–299 (2004).CrossRef
    K. E. Mandt, O. Mousis, J. Lunine, and D. Gautier, “Protosolar ammonia as the unique source of Titan’s nitrogen,” Astrophys. J. 788, L24 (2014). http://​dxdoiorg/​ 10.1088/2041-8205/788/2/ L24.CrossRef
    K. E. Mandt, O. Mousis, J. I. Lunine, and D. Gautier “Improved constraints on the nitrogen isotopes in the protosolar nebula: implications for the source of the Earth’s nitrogen,” Lunar Planet. Sci. Conf. 45, 1955pdf (2014).
    K. E. Mandt, J. H. Waite, W. Lewis, B. Magee, J. Bell, J. Lunine, O. Mousis, and D. Cordier, “Isotopic evolution of the major constituents of Titan’s atmosphere based on Cassini data,” Planet. Space Sci. 57, 1917–1930 (2009).CrossRef
    J. Manfroid, E. Jehin, D. Hutsemékers, A. Cochran, J.-M. Zucconi, C. Arpigny, R. Schulz, J. A. Stüwe, and I. Ilyin, “The CN isotopic ratios in comets,” Astron. Astrophys. 503 (2), 613–624 (2009).CrossRef
    U. Marboeuf, O. Mousis, J.-M. Petit, B. Schmitt, A. L. Cochran, and H. A. Weaver, “On the stability of clathrate hydrates in comets 67P/Churyumov-Gerasimenko and 46P/Wirtanen,” Astron. Astrophys. 525, id.A144 (2011).
    B. Marty and L. Zimmermann, “Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition,” Geochim. Cosmochim. Acta 63 (21), 3619–3633 (1999).CrossRef
    B. Marty, M. Chaussidon, R. C. Wiens, A. J. G. Jurewicz, and D. S. Burnett, “A 15N-Poor isotopic composition for the solar system as shown by genesis solarwind samples,” Science 332, 1533–1536 (2011).CrossRef
    B. Marty, L. Zimmermann, P. G. Burnard, R. Wieler, V. S. Heber, D. L. Burnett, R. C. Wiens, and P. Bochsler, “Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: Evidence for large scale isotope heterogeneity in the early solar system,” Geochim. Cosmochim. Acta 74, 340–355 (2010).CrossRef
    C. P. McKay, T. W. Scattergood, J. Pollack, W. J. Borucki, and H. T. van Ghyseghem “High-temperature shock formation of N2 and organics on primordial Titan,” Nature 332, 520–522 (1988).CrossRef
    P. L. Morrill, J. G. Kuenen, O. J. Johnson, S. Suzuki, A. Rietze, A. L. Sessions, M. L. Fogel, and K. H. Nealson, “Geochemistry and geobiology of a present-day serpentinization site in California: the Cedars,” Geochim. Cosmochim. Acta 109, 222–240 (2013).CrossRef
    O. Mousis, Y. Alibert, D. Hestroffer, U. Marboeuf, C. Dumas, B. Carry, J. Horner, and F. Selsis, “Origin of volatiles in the main belt,” Mon. Not. R. Astron. Soc. 383 (3), 1269–1280 (2008).CrossRef
    O. Mousis, A. Guilbert-Lepoutre, J. I. Lunine, A. L. Cochran, J. H. Waite, J.-M. Petit, and P. Rousselot, “The dual origin of the nitrogen deficiency in comets: selective volatile trapping in the nebula and postaccretion radiogenic heating,” Astrophys. J. 757 (2), article id. 146 (2012).CrossRef
    O. Mousis, J. I. Lunine, M. Pasek, D. Cordier, J. H. Waite, K. E. Mandt, W. S. Lewis, and M.-J. Nguyen, “A primordial origin for the atmospheric methane of Saturn’s moon Titan,” Icarus 204, 749–751 (2009b).CrossRef
    O. Mousis, J. I. Lunine, C. Thomas, M. Pasek, U. Marboeuf, Y. Alibert, V. Ballenegger, D. Cordier, Y. Ellinger, F. Pauzat, and S. Picaud, “Clathration of volatiles in the solar nebula and implications for the origin of Titan’s atmosphere,” Astrophys. J. 691, 1780–1786 (2009a).CrossRef
    M. J. Mumma, B. P. Bonev, G. L. Villanueva, L. Paganini, M. A. DiSanti, E. L. Gibb, J. V. Keane, K. J. Meech, G. A. Blake, R. S. Ellis, H. Boehnhardt, and K. MageeSauer, “Temporal and spatial aspects of gas release during the 2010 apparition of Comet 103P/Hartley 2,” Astrophys. J. Lett. 734 (1), article id. L7 (2011).CrossRef
    D. Nakashima, T. Ushikubo, D. Joswiak, D. Brownlee, G. Matrajt, M. Weisberg, M. Zolensky, and N. Kita, “Oxygen isotopes in crystalline silicates of comet Wild 2: a comparison of oxygen isotope systematics between Wild 2 particles and chondritic materials,” Earth Planet. Sci. Lett. 357, 355–365 (2012).CrossRef
    H. B. Niemann, S. Atreya, G. R. Carignan, T. M. Donahue, J. A. Haberman, D. N. Harpold, R. E. Hartle, D. M. Hunten, W. T. Kasprzak, P. R. Mahaffy, T. C. Owen, N. W. Spencer, and S. H. Way, “The Galileo probe mass spectrometer: composition of Jupiter’s atmosphere,” Science 272 (5263), 846–849 (1996).CrossRef
    H. B. Niemann, S. K. Atreya, S. J. Bauer, G. R. Carignan, J. E. Demick, R. L. Frost, D. Gautier, J. A. Haberman, D. N. Harpold, D. M. Hunten, G. Israel, J. I. Lunine, W. T. Kasprzak, T. C. Owen, M. Paulkovich, et al., “The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe,” Nature 438 (7069), 779–784 (2005).CrossRef
    H. B. Niemann, S. K. Atreya, G. R. Carignan, T. M. Donahue, J. A. Haberman, D. N. Harpold, R. E. Hartle, D. M. Hunten, W. T. Kasprzak, P. R. Mahaffy, T. C. Owen, and S. H. Way, “The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer,” J. Geophys. Res. 103 (E10), 22831–22846 (1998).CrossRef
    H. B. Niemann, S. K. Atreya, J. E. Demick, D. Gautier, J. A. Haberman, D. N. Harpold, W. T. Kasprzak, J. I. Lunine, T. C. Owen, and F. Raulin, “Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini–Huygens probe gas chromatograph mass spectrometer experiment,” J. Geophys. Res. 115 (E12), CiteID E12006 (2010).
    C. A. Nixon, B. Temelso, S. Vinatier, N. A. Teanby, B. Bézard, R. K. Achterberg, K. E. Mandt, C. D. J. Sherrill, P. G. Irwin, D. E. Jennings, P. N. Romani, A. Coustenis, and F. M. Flasar, “Isotopic ratios in Titan’s methane: measurements and modeling,” Astrophys. J. 749 (2), article id. 159 (2012).CrossRef
    J. G. O’Rourke and D. J. Stevenson, “Stability of ice/rock mixtures with application to a partially differentiated Titan,” Icarus 227, 67–77 (2014).CrossRef
    T. Ootsubo, H. Kawakita, S. Hamada, H. Kobayashi, M. Yamaguchi, F. Usui, T. Nakagawa, M. Ueno, M. Ishiguro, and T. Sekiguchi “AKARI near-infrared spectroscopic survey for CO2 in 18 comets,” Astrophys. J. 752 (1), id. 15 (2012).CrossRef
    T. Owen, “The composition and early history of the atmosphere in Mars,” in Mars (A93-27852 09-91), Ed. by H. H. Kiever, B. M. Jakosky, C. W. Snyder, and M. S. Matthews (University of Arizona Press, Tucson, 1992), pp. 818–834.
    T. C. Owen, P. R. Mahaffy, H. B. Niemann, S. K. Atreya, and M. H. Wong, “Protosolar nitrogen,” Astrophys. J. 553 (1), L77–L79 (2001).CrossRef
    L. Paganini, M. J. Mumma, G. L. Villanueva, M. A. DiSanti, B. P. Bonev, M. Lippi, and H. Boehnhardt, “The chemical composition of CO-rich comet C/2009 P1 (Garradd) AT R h = 2.4 and 2.0 AU before Perihelion,” Astrophys. J. Lett. 748 (1), id. L1,3 (2012).CrossRef
    F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck, R. Srama, et al. “Sodium salts in Ering ice grains from an ocean below the surface of Enceladus,” Nature 459, 1098–1101 (2009).CrossRef
    F. Postberg, J. Schmidt, J. Hiller, S. Kempf, and R. Srama, “A salt-water reservoir as the source of a compositionally stratified plume on Enceladus,” Nature 474, 620–622 (2011).CrossRef
    F. Robert, “Solar system deuterium/hydrogen ratio,” in Meteorites and the Early Solar System II, (Space Science Series) Ed. by S. L. Dante, Harry Y. McSween (Univ. Arizona Press, 2006), pp. 341–351.
    L. Roth et al. AGU XLVII, Abstract #P52A-05(2014b).
    L. Roth, K. D. Retherford, J. Saur, D. F. Strobel, P. D. Feldman, M. A. McGrath, F. Nimmo, J. R. Spencer, C. Grava, and A. Bloecker, “Following up on the discovery of water vapor at Europa’s South Pole with HST,” American Geophysical Union, Fall Meeting 2014, (Sao Francisco, 2014), abstract #P52A-05.
    L. Roth, J. Saur, K. D. Retherford, D. F. Strobel, P. D. Feldman, M. A. McGrath, and F. Nimmo, “Transient Water Vapor at Europa’s South Pole,” Science 343 (6167), 171–174 (2014à).CrossRef
    P. Rousselot, O. Pirali, E. Jehin, M. Vervloet, D. Hutsemékers, J. Manfroid, D. Cordier, M.-A. Martin-Drumel, S. Gruet, C. Arpigny, A. Decock, and O. Mousis, “Toward a unique nitrogen isotopic ratio in cometary ices,” Astrophys. J. Lett. 780 (2), L17 (2014).CrossRef
    A. V. Rusol and V. A. Dorofeeva, “Dynamic model of thermal evolution of stone–ice bodies as the possible source of the ice Saturn’s rings,” in Abstracts of the International Conference on Physicochemical and Petrophysical Studies in the Earth’s Science, Moscow, Russia, 2012, (Moscow–Borok, 2012), pp. 236–239.
    S. K. Saxena and G. Eriksson, “Chemistry of the formation of the terrestrial planets,” Chem. Phys. Terrestr. Planets Ed. by S. K. Saxena (Springer, New York, 1986), pp. 30–105.CrossRef
    Y. Sekine and H. Genda, “Giant impacts in the saturnian system: a possible origin of diversity in the inner mid-sized satellites,” Planet. Space Sci. 63–64, 133–138 (2012).CrossRef
    Y. Sekine, H. Genda, S. Sugita, T. Kadono, and T. Matsui, “Replacement and late formation of atmospheric N2 on undifferentiated Titan by impacts,” Nature Geosci. 4 (6), 359–362 (2011).CrossRef
    Y. Shinnaka, H. Kawakita, H. Kobayashi, M. Nagashima, and D. C. Boice, “14NH2/15NH2 ratio in Comet C/2012 S1 (ISON) observed during its outburst in 2013 November,” Astrophys. J. Lett. 782 (2), id. L16 (2014).CrossRef
    Yu. V. Shvarov, “HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by Windows,” Geochem. Int. 46 (8), 834–839 (2008).CrossRef
    F. Sohl, F. Hussmann, H. Schwentker, B. Spohn, T. and R. D. Lorenz, “Interior structure models and tidal Love numbers of Titan,” J. Geophys. Res. 108 (E12), 5130 (2003).CrossRef
    N. Szponar, W. J. Brazelton, M. O. Schrenk, D. M. Bower, A. Steele, and P. L. Morrill, “Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: a Mars analogue,” Icarus. 224, 286–296 (2013).CrossRef
    U. von Zahn, S. Kumar, H. Niemann, and R. Prinn, “Composition of the Venus atmosphere,” in Venus, Ed. by D. M. Hunter, L. Colin, T. M. Donahue, and V. I. Moroz, (Univ of Arizona Press, Tucson, 1983), pp. 299–430.
    J. H. Waite, W. S. Lewis, B. A. Magee, J. Lunine, W. B.McKinnon, C. R. Glein, O. Mousis, D. T. Young, T. Brockwell, J. Weslake, M.-J. Nguyen, B. D. Teolis, H. B.Niemann, R. L. McNutt, M. Perry, et al., “Liquid water on Enceladus from observations of ammonia and 40Ar in the plume,” Nature 460 (7254), 487–490 (2009).CrossRef
    M. Y. Zolotov, “Chemical disequilibria and sources of Gibbs free energy inside Enceladus,” in American Geophysical Union, Fall Meeting (Sao Francisco, 2010), Abstract #P33A-1563.
  • 作者单位:V. A. Dorofeeva (1)

    1. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow, 119991, Russia
  • 刊物主题:Geochemistry;
  • 出版者:Springer US
  • ISSN:1556-1968
文摘
Jupiter’s and Saturn’s regular satellites, which posses much ice, are currently thought to have been formed during the early evolution of the Solar System in circumplanetary protosatellite disks. Two of Saturn’s regular satellites—Titan and Enceladus—were experimentally proved to contain, along with water, other volatile components: molecular nitrogen, and methane (which are the major components of Titan’s atmosphere) and various nitrogen and carbon compounds in water plumes of Enceladus. The protomaterial of these rocky–icy satellites was formed in the outer regions of the gas–dust circumsolar nebula, and its closest analogue currently accessible to study is cometary material. The paper presents a review of experimental data on the chemical and isotopic composition of cometary material as possible sources of volatile components on Titan and Enceladus and model evaluations of temperatures in the circumsolar gas–dust protoplanetary disk and Jupiter’s and Saturn’s protosatellite disks during various evolutionary episodes of the solar system. The P–T parameters of the origin of the protomaterial of Jupiter’s and Saturn’s regular satellites were proved to have been remarkably different, and hence, the material of Europa, a Jupiter’s regular satellite, cannot contain any volatile components other than water, in contrast to Titan and Enceladus. This conclusion is supported by experimental data. Cometary material is likely genetically related to the material of Saturn’s regular satellites Titan and Enceladus. The paper presents results of thermodynamic simulation of the evolution of the chemical and phase composition of Saturn’s satellites and suggests a model for the origin of Titan’s nitrogen–methane atmosphere. Keywords Jupiter’s and Saturn’s regular satellites comets volatile components Titan’s atmosphere plumes of Enceladus protoplanetary circumsolar disk protosatellite disks of giant planets

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700