Full Disk Encryption: Bridging Theory and Practice
详细信息    查看全文
文摘
We revisit the problem of Full Disk Encryption (FDE), which refers to the encryption of each sector of a disk volume. In the context of FDE, it is assumed that there is no space to store additional data, such as an IV (Initialization Vector) or a MAC (Message Authentication Code) value. We formally define the security notions in this model against chosen-plaintext and chosen-ciphertext attacks. Then, we classify various FDE modes of operation according to their security in this setting, in the presence of various restrictions on the queries of the adversary. We will find that our approach leads to new insights for both theory and practice. Moreover, we introduce the notion of a diversifier, which does not require additional storage, but allows the plaintext of a particular sector to be encrypted to different ciphertexts. We show how a 2-bit diversifier can be implemented in the EagleTree simulator for solid state drives (SSDs), while decreasing the total number of Input/Output Operations Per Second (IOPS) by only 4%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700