Monitoring and modeling the effects of groundwater flow on arsenic transport in Datong Basin
详细信息    查看全文
  • 作者:Qian Yu (1)
    Yanxin Wang (1)
    Rui Ma (1)
    Chunli Su (1)
    Ya Wu (1)
    Junxia Li (1)
  • 关键词:arsenic ; groundwater flow model ; Datong Basin
  • 刊名:Journal of Earth Science
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:25
  • 期:2
  • 页码:386-396
  • 全文大小:607 KB
  • 参考文献:1. Aziz, Z., van Geen, A., Stute, M., et al., 2008. Impact of Local Recharge on Arsenic Concentrations in Shallow Aquifers Inferred from the Electromagnetic Conductivity of Soils in Araihazar, Bangladesh. / Water Resources Research, 44(7): W07416, doi:10.1029/2007/WR006000 CrossRef
    2. Benner, S. G., Polizzotto, M. L., Kocar, B. D., et al., 2008. Groundwater Flow in an Arsenic-Contaminated Aquifer, Mekong Delta, Cambodia. / Applied Geochemistry, 23(11): 3072-087, doi:10.1016/j.apgeochem.2008.06.013 CrossRef
    3. Berg, M., Stengel, C., Trang, P. T. K., et al., 2007. Magnitude of Arsenic Pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. / Science of the Total Environment, 372(2): 413-25, doi:10.1016/j.scitotenv.2006.09.010 CrossRef
    4. BGS and DPHE, 2001. Arsenic Contamination of Groundwater in Bangladesh. In: Kinniburgh, D. G., Smedley, P. L., eds., Final Report BGS Technical Report WC/00/19, British Geological Survey, Keyworth, U.K.
    5. Charlet, L., Polya, D. A., 2006. Arsenic in Shallow, Reducing Groundwaters in Southern Aisa: An Environmental Health Disaster. / Elements, 2(2): 91-6 CrossRef
    6. Dong, S. G., Tang, Z. H., Liu, B. W., et al., 2008. Numerical Simulation for the Groundwater in Datong Basin and Evaluation of the Optimization of Water Resources. / Geotechnical Investigation & Surveying, 3: 30-5 (in Chinese with English Abstract)
    7. Duan, M. Y., Xie, Z. M., Wang, Y. X., et al., 2009. Microcosm Studies on Iron and Arsenic Mobilization from Aquifer Sediments under Different Conditions of Microbial Activity and Carbon Source. / Environmental Geology, 57(5): 997-003, doi:10.1007/s00254-008-1384-z CrossRef
    8. Guo, H. M., Wang, Y. X., Shpeizer, G. M., et al., 2003. Natural Occurrence of Arsenic in Shallow Groundwater, Shanyin, Datong Basin, China. / Journal of Environmental Science and Health Part A-Toxic/Hazard Substances & Environmental Engineering, 38(11): 2565-580, doi:10.1018/ESE-120024447
    9. Guo, H. M., Wang, Y. X., 2004. Hydrogeochemical Processes in Shallow Quaternary Aquifers from the Northern Part of the Datong Basin, China. / Applied Geochemistry, 19(1): 19-7 CrossRef
    10. Guo, H. M., Zhang, Y., Jia, Y. F., et al., 2013. Dynamic Behaviors of Water Levels and Arsenic Concentration in Shallow Groundwater from the Hetao Basin, Inner Mongolia. / Journal of Geochemical Exploration, 135: 130-40 CrossRef
    11. Farooqi, A., Masuda, H., Kusakabe, M., et al., 2007. Distribution of Highly Arsenic and Fluoride Contaminated Groundwater from East Punjab, Pakistan, and the Controlling Role of Anthropogenic Pollutes in the Natural Hydrological Cycle. / Geochemical Journal, 41(4): 213-34 CrossRef
    12. Fetter, C. W., 2001. Applied Hydrogeology. Prentice-Hall, New Jersey. 75-5
    13. Han, S., Zhang, F., Zhang, H., et al., 2013. Spatial and Temporal Patterns of Groundwater Arsenic in Shallow and Deep Groundwater of Yinchuan Plain, China. / Journal of Geochemical Exploration, 135: 71-8, doi:org/10.1016/j.gexplo.2012.11.005 CrossRef
    14. Harvey, C. E., Ashfaque, K. N., Yu, W., et al., 2006. Groundwater Dynamics and Arsenic Contamination in Bangladesh. / Chemical Geology, 228(1): 112-36, doi:10.1016/j.chemgeo.2005.11.025 CrossRef
    15. Horneman, A., van Geen, A., Kent, D. V., et al., 2004. Arsnenic Mobilization in Bangladesh Groundwater Decoupled from Dissolution of Iron Oxyhydroxides, Part 1: Evidence from Borehole Cuttings. / Geochimica et Cosmochima Acta, 68: 3459-473 CrossRef
    16. Islam, F. S., Gault, A. G., Boothman, C., et al., 2004. Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments. / Nature, 430(6995): 68-1, doi:10.1038/nature02638 CrossRef
    17. Kirk, M. F., Holm, T. R., Park, J., et al., 2004. Bacterial Sulfate Reduction Limits Natural Arsenic Contamination in Groundwater. / Geology, 32(1): 953-56, doi:1130/G20842.1 CrossRef
    18. Kinniburgh, D. G., Smedley, P. L., 2001. Arsenic Contamination of Groundwater in Bangladesh. In: Kinniburgh, D. G., Smedley, P. L., eds., Final Report BGS Technical Report WC/00/19, British Geological Survey, Keyworth, U.K.
    19. Klump, S., Kipfer, R., Cirpka, O. A., et al., 2006. Groundwater Dynamics and Arsenic Mobilization in Bangladesh Assessed Using Noble Gases and Tritium. / Environmental Science & Technology, 40(1): 243-50, doi:10.1012/es051284w CrossRef
    20. Konikow, L. F., Neuzil, C. E., 2007. A Method to Estimate Groundwater Depletion from Confining Layers. / Water Resources Research, 43(7): W07417, doi:10.1029/2006WR005597 CrossRef
    21. Li, J., Wang, Z. H., Cheng, X. T., et al., 2005. Investigation of the Epidemiology of Endemic Arsenism in Ying County of Shanxi Province and the Content Relationship between Water Fluoride and Water Arsenic in Aquatic Environment. / Chinese Journal of Endemiology, 24(2): 183-85 (in Chinese with English Abstract)
    22. Lowers, H. A., Breit, G. N., Foster, A. L., et al., 2007. Arsenic Incorporation into Authigenic Pyrite, Bengal Basin Sediment, Bangladesh. / Geochemica et Cosmochimica Acta, 71(11): 2699-717, doi:10.1016/j.gca.2007.03.022 CrossRef
    23. Mandal, B. K., Chowdhury, T. R., Samanta, G., et al., 1996. Arsenic in Groundwater in Seven Districts of West Bengal, India: the Biggest Arsenic Calamity in the World. / Current Science, 70(11): 976-86
    24. Masuda, H., Mitamura, M., Farooqi, A. M., et al., 2010. Geologic Structure and Geochemical Characteristics of Sediment of Fluoride and Arsenic Contaminated Groundwater Aquifer in Kalalanwala and Its Vicinity, Punjab, Pakistan. / Geochemical Journal, 44(6): 489-05 CrossRef
    25. McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., et al., 2004. Natural Organic Matter in Sedimentary Basins and Its Relation to Arsenic in Anoxic Ground Water: The Example of West Bengal and Its Worldwide Implications. / Applied Geochemistry, 19(8): 1255-293, doi:10.1016/j.apgeochem.2004.02.001 CrossRef
    26. McDonald, M. G., Harbaugh, A. W., 1988. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model. USGS, Techniques of Water-Resources Investigations 34 (Book 6), 586 (Chapter A1)
    27. Nakaya, S., Natsume, H., Masuda, H., et al., 2011. Effect of Groundwater Flow on Forming Arsenic Contaminated Groundwater in Sonargaon, Bangladesh. / Journal of Hydrology, 409(3-): 724-36, doi:10.1016/j.jhydrol.2011.09.006 CrossRef
    28. Nickson, R. T., McArthur, J. M., Burgess, W. G., et al., 1998. Arsenic Poisoning of Bangladesh Groundwater. / Nature, 395(6700): 338-38 CrossRef
    29. Nickson, R. T., McArthur, J. M., Ravenscroft, P., et al., 2000. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. / Applied Geochemistry, 15(4): 403-13 CrossRef
    30. Pei, H. H., Liang, S. X., Ning, L. Y., 2005. A Discussion of the Enrichment and Formation of Arsenic in Groundwater in Datong Basin. / Hydrogeology & Engineering Geology, 32(4): 65-9 (in Chinese with English Abstract)
    31. Peters, S. C., Blum, J. D., 2003. The Source and Transport of Arsenic in a Bedrock Aquifer, New Hampshire, USA. / Applied Geochemistry, 18(11): 1773-787, doi:10.1016/S0883-2927(03)00109-4 CrossRef
    32. Postma, D., Larsen, F., Hue, N. T. M., et al., 2007. Arsenic in Groundwater of the Red River Flood Plain, Vietnam: Controlling Geochemical Processes and Reactive Transport Modeling. / Geochemica et Cosmochimica Acta, 71(21): 5054-071, doi:10.1016/j.gca.2007.08.020 CrossRef
    33. Schreiber, M. E., Simo, J. A., Freiberg, P. G., 2000. Stratigraphic and Geochemical Controls on Naturally Occurring Arsenic in Groundwater, Eastern Wisconsin, USA. / Hydrogeology Journal, 8(2): 161-76, doi:10.1007/PL00021535 CrossRef
    34. Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behavior and Distribution of Arsenic in Natural Waters. / Applied Geochemistry, 17(5): 517-68 CrossRef
    35. Smedley, P. L., Zhang, M., Zhang, G., et al., 2003. Mobilisation of Arsenic and Other Trace Elements in Fluviolacustrine Aquifers of the Huhhot Basin, Inner Mongolia. / Applied Geochemistry, 18(9): 1453-477, doi:10.1016/S0883-2927(03)00062-3 CrossRef
    36. Smith, A. H., Lingas, E. Q., Rahamn, M., 2000. Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. / Bull. / of the World Health Organization, 78(9): 1093-103, doi:ogr/10.1590/S0042-96862000000900005
    37. Stigter, T. Y., Carvalho Dill, A. M. M., Ribeiro, L., et al., 2006. Impact of the Shift from Groundwater to Surface Water Irrigation on Aquifer Dynamics and Hydrochemistry in A Semi-Arid Region in the South of Portugal. / Agricultural Water Management, 85(1-): 121-32, 10.1016/j.agwat.2006.04.004 CrossRef
    38. Stute, M., Zheng, Y., Schlosser, P., et al., 2007. Hydrological Control of As Concentrations in Bangladesh Groundwater. / Water Resources Research, 43(9), doi:10.1029/2005WR004499
    39. Thangarajan, M., Linn, F., Uhl, V., et al., 1999. Modeling An Inland Delta Aquifer System to Evolve Pre-Development Management Schemes: A Case Study Upper Thamalakane River Valley, Botswana, Southern Africa. / Environmental Geology, 38(4): 285-95 CrossRef
    40. ven Geen, A., Zheng, Y., Stute, M., et al., 2003. Comments on “Arsenic Mobility and Groundwater Extraction in Bangladesh-(II). / Science, 300(5619): 584c-84c, doi:10.1126/science.1081057 CrossRef
    41. Wang, Y. X., Shpeyzer, G., 2000. Hydrogeochemistry of Mineral Waters from Rrift Systems on the East Asia Continent: Case Studies in Shanxi and Baikal. China Enviromental Science Press, Beijing (in Chinese with English Abstract)
    42. Wang, Y. X., Shavartsev, S. L., Su, C. L., 2009. Genesis of Arsenic/Fluoride-Enriched Soda Water: A Case Study at Datong, Northern China. / Applied Geochemistry, 24(4): 641-49, doi:10.1016/j.apgeochem.2008.12.015 CrossRef
    43. Xie, X. J., Wang, Y. X., Su, C. L., et al., 2008. Arsenic Mobilization in Shallow Aquifers of Datong Basin: Hydrochemical and Mineralogical Evidences. / Journal of Geochemical Exploration, 98(3): 107-15, doi:10.1016/j.gexplo.2008.01.002 CrossRef
    44. Xie, X. J., Ellis, A., Wang, Y. X., et al., 2009. Geochemsitry of Redox-Sensitive Elements and Sulfur Isotopes in the Haigh Arsenic Groundwater System of Datong Basin, China. / Science of the Total Environment, 407(12): 3823-835, doi:10.1016/j.scitotenv.2009.01.041 CrossRef
    45. Xie, X. J., Wang, Y. X., Li, J. X., et al., 2012a. Occurrence of High Arsenic Groundwater at the Datong and Huhhot Basin, Northern China: Hydrochemical and Isotopic Investigation. / Fresenius Environmental Bulletin, 21(4): 819-29
    46. Xie, X. J., Wang, Y. X., Su, C. L., et al., 2012b. Influence of Irrigation Practices on Arsenic Mobilization: Evidence from Isotope Composition and Cl/Br Ratios in Groundwater from Datong Basin, Northern China. / Journal of Hydrology, 424: 37-7, doi:10.1016/j.jhydrol.2011.12.017 CrossRef
    47. Yu, G. Q., Sun, D. J., Zheng, Y., 2007. Health Effects of Exposure to Natural Arsenic in Groundwater and Coal in China: An Overview of Occurrence. / Environmental Health Perspectives, 115(4): 636-42, doi:10.1289/ehp.9268 CrossRef
    48. Zhang, J. G., Zhao, H. J., 1987. Water Resource Management in Shanxi Province. / Ground Water, 4: 232-34 (in Chinese)
  • 作者单位:Qian Yu (1)
    Yanxin Wang (1)
    Rui Ma (1)
    Chunli Su (1)
    Ya Wu (1)
    Junxia Li (1)

    1. State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
  • ISSN:1867-111X
文摘
Although arsenic-contaminated groundwater in the Datong Basin has been studied for more than 10 years, little has been known about the complex patterns of solute transport in the aquifer systems. Field monitoring and transient 3D unsaturated groundwater flow modeling studies were carried out on the riparian zone of the Sanggan River at the Datong Basin, northern China, to better understand the effects of groundwater flow on As mobilization and transport. The results indicate that irrigation is the primary factor in determining the groundwater flow paths. Irrigation can not only increase groundwater level and reduce horizontal groundwater velocity and thereby accelerate vertical and horizontal groundwater exchange among sand, silt and clay formations, but also change the HS?/sup> concentration, redox conditions of the shallow groundwater. Results of net groundwater flux estimation suggest that vertical infiltration is likely the primary control of As transport in the vadose zone, while horizontal water exchange is dominant in controlling As migration within the sand aquifers. Recharge water, including irrigation return water and flushed saltwater, travels downward from the ground surface to the aquifer and then nearly horizontally across the sand aquifer. The maximum value of As enriched in the riparian zone is roughly estimated to be 1 706.2 mg·d? for a horizontal water exchange of 8.98 m3·d? close to the river and an As concentration of 190 μg·L?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700