Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors
详细信息    查看全文
  • 作者:Qianhui Wu ; Ming Chen ; Kaiyu Chen ; Shishuang Wang…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:51
  • 期:3
  • 页码:1572-1580
  • 全文大小:2,262 KB
  • 参考文献:1.Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270CrossRef
    2.Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRef
    3.Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef
    4.Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef
    5.Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834CrossRef
    6.Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and Storage. Small 8:1130–1166CrossRef
    7.Jiang H, Lee PS, Li C (2012) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53CrossRef
    8.Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRef
    9.Devan RS, Patil RA, Lin J-H, Ma Y-R (2012) One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv Funct Mater 22:3326–3370CrossRef
    10.Zhi M, Xiang C, Li J, Li M, Wu N (2012) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88CrossRef
    11.Zhao X, Sánchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855CrossRef
    12.Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721CrossRef
    13.Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRef
    14.Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769
    15.Liu S, Tang Z (2010) Polyoxometalate-based functional nanostructured films: current progress and future prospects. Nano Today 5:267–281CrossRef
    16.Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695CrossRef
    17.Chen J, Huang K, Liu S (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta 55:1–5CrossRef
    18.Ghasemi S, Ahmadi F (2015) Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor. J Power Sources 289:129–137CrossRef
    19.Mirmohseni A, Dorraji MSS, Hosseini MG (2012) Influence of metal oxide nanoparticles on pseudocapacitive behavior of wet-spun polyaniline-multiwall carbon nanotube fibers. Electrochim Acta 70:182–192CrossRef
    20.Neill LO, Johnston C, Grant PS (2015) Enhancing the supercapacitor behaviour of novel Fe3O4/FeOOH nanowire hybrid electrodes in aqueous electrolytes. J Power Sources 274:907–915CrossRef
    21.Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L (2013) Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochim Acta 114:674–680CrossRef
    22.Brousse T, Bélanger D (2003) A hybrid Fe3O4-MnO2 capacitor in mild aqueous electrolyte. Electrochem Solid-State Lett 6:A244CrossRef
    23.Chung KW, Kim KB, Han SH, Lee H (2005) Novel synthesis and electrochemical characterization of nano-sized cellular Fe3O4 thin film. Electrochem Solid-State Lett 8:A259–A262CrossRef
    24.Chen J, Huang K, Liu S (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta 55:1–5CrossRef
    25.Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48:6707–6712CrossRef
    26.Kim M, Hwang Y, Kim J (2013) Super-capacitive performance depending on different crystal structures of MnO2 in graphene/MnO2 composites for supercapacitors. J Mater Sci 48:7652–7663CrossRef
    27.Liu GJ, Fan LQ, Yu FD, Wu JH, Liu L, Qiu ZY, Liu Q (2013) Facile one-step hydrothermal synthesis of reduced graphene oxide/Co3O4 composites for supercapacitors. J Mater Sci 48:8463–8470CrossRef
    28.Wang L, Deng D, Salley SO, Ng KYS (2015) Facile synthesis of 3-D composites of MnO2 nanorods and holey graphene oxide for supercapacitors. J Mater Sci 50:6313–6320CrossRef
    29.Wang M, Xue J, Zhang F, Ma W, Cu H (2014) Growth of aluminum-substituted nickel hydroxide nanoflakes on nickel foam with ultrahigh specific capacitance at high current density. J Mater Sci 50:2422–2428CrossRef
    30.Kim YH, Park SJ (2011) Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes. Curr Appl Phys 11:462–466CrossRef
    31.Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Zhang P, Shao C, Liu Y (2011) Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale 3:5034–5040CrossRef
    32.Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2208CrossRef
    33.Liew SY, DA ThielemansW Walsh (2010) Electrochemical capacitance of nanocomposite polypyrrole/cellulose films. J Phys Chem C 114:17926–17933CrossRef
    34.Kumar NA, Baek JB (2014) Electrochemical supercapacitors from conducting polyaniline–graphene platforms. Chem Commun 50:6298–6308CrossRef
    35.Otrokhov G, Pankratov D, Shumakovich G, Khlupova M, Zeifman Y, Vasil’eva I, Morozova O, Yaropolov A (2014) Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application. Electrochim Acta 123:151–157CrossRef
    36.Jaidev Jafri RI, Mishra AK, Ramaprabhu S (2011) Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J Mater Chem 21:17601–17605CrossRef
    37.Suppes GM, Deore BA, Freund MS (2008) Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications. Langmuir 24:1064–1069CrossRef
    38.Cai X, Zhang Q, Wang S, Peng J, Zhang Y, Ma H, Li J, Zhai M (2014) Surfactant-assisted synthesis of reduced graphene oxide/polyaniline composites by gamma irradiation for supercapacitors. J Mater Sci 49:5667–5675CrossRef
    39.Chen J, Liu Y, Li W, Wu C, Xu L, Yang H (2015) Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. J Mater Sci 50:5466–5474CrossRef
    40.Kong LB, Zhang J, An JJ, Luo YC, Kang L (2008) MWNTs/PANI composite materials prepared by in situ chemical oxidative polymerization for supercapacitor electrode. J Mater Sci 43:3664–3669CrossRef
    41.Li X, Zhou M, Xu H, Wang G, Wang Z (2014) Synthesis and electrochemical performances of a novel two-dimensional nanocomposite: polyaniline-coated laponite nanosheets. J Mater Sci 49:6830–6837CrossRef
    42.Zhu M, Diao G (2011) Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. J Phys Chem C 115:18923–18934CrossRef
    43.Zhu M, Diao G (2011) Magnetically recyclable Pd nanoparticles immobilized on magnetic Fe3O4@C nanocomposites: preparation, characterization, and their catalytic activity toward suzuki and heck coupling reactions. J Phys Chem C 115:24743–24749CrossRef
    44.Chen M, Liu P, Wang C, Ren W, Diao G (2014) Fast catalytic reduction of an azo dye by recoverable and reusable Fe3O4@PANI@Au magnetic composites. New J Chem 38:4566–4573CrossRef
  • 作者单位:Qianhui Wu (1)
    Ming Chen (1)
    Kaiyu Chen (1)
    Shishuang Wang (1)
    Chengjiao Wang (1)
    Guowang Diao (1)

    1. College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
In this work, magnetite (Fe3O4)-based core/shell composites, including Fe3O4@carbon (C), Fe3O4@polyaniline (PANI), and Fe3O4@C@PANI, are synthesized via a facile hydrothermal process. The as-prepared core/shell composites are characterized by transmission electron microscopy, X-ray diffraction powder, and Fourier transform infrared spectroscopy. The electrochemical performances of Fe3O4, Fe3O4@C, Fe3O4@PANI, and Fe3O4@C@PANI are investigated using cyclic voltammetry, galvanostatic charge–discharge measurement, and electrochemical impedance spectroscopy. The results show that the as-prepared nanomaterials are all typical pseudocapacitance capacitors. Carbon shell can significantly increase the electronic conductivity of electrode materials, reduce capacity loss, and improve the reversibility of Fe3O4. PANI coating layer can expressively enhance the specific capacitance. Synergistic effect of double shells improves the electrochemical property of Fe3O4. Fe3O4@C@PANI composites display the high capacitance of 322.5 F g−1 at 2.5 A g−1, and 87.8 % of which can still be maintained after 3000 charge–discharge cycles. The excellent electrochemical properties of Fe3O4@C@PANI evidence their potential application as supercapacitors in energy storage field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700