Peptide Functionalized Nanoplasmonic Sensor for Explosive Detection
详细信息    查看全文
  • 作者:Diming Zhang ; Qian Zhang ; Yanli Lu ; Yao Yao ; Shuang Li ; Jing Jiang…
  • 关键词:Nanocup arrays ; Peptide ; 2 ; 4 ; 6 ; trinitrotoluene (TNT) ; Localized surface plasmon resonance (LSPR) ; Nanosensor
  • 刊名:Nano-Micro Letters
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:8
  • 期:1
  • 页码:36-43
  • 全文大小:1,057 KB
  • 参考文献:1.J.I. Steinfeld, J. Wormhoudt, Explosives detection: a challenge for physical chemistry. Annu. Rev. Phys. Chem. 49(1), 203–232 (1998). doi:10.​1146/​annurev.​physchem.​49.​1.​203 CrossRef
    2.J.S. Caygill, F. Davis, S.P. Higson, Current trends in explosive detection techniques. Talanta 88, 14–29 (2012). doi:10.​1016/​j.​talanta.​2011.​11.​043 CrossRef
    3.M.K. Habib, Controlled biological and biomimetic systems for landmine detection. Biosens. Bioelectron. 23(1), 1–18 (2007). doi:10.​1016/​j.​bios.​2007.​05.​005 CrossRef
    4.A.M. O’Mahony, J. Wang, Nanomaterial-based electrochemical detection of explosives: a review of recent developments. Anal. Methods 5(17), 4296–4309 (2013). doi:10.​1039/​c3ay40636a CrossRef
    5.J.L. Novotney, W.R. Dichtel, Conjugated porous polymers for TNT vapor detection. ACS Macro Lett. 2(5), 423–426 (2013). doi:10.​1021/​mz4000249 CrossRef
    6.R.G. Smith, N. D’Souza, S. Nicklin, A review of biosensors and biologically-inspired systems for explosives detection. Analyst 133(5), 571–584 (2008). doi:10.​1039/​b717933m CrossRef
    7.A. Gingras, J. Sarette, E. Shawler, T. Lee, S. Freund, E. Holwitt, B.W. Hicks, Fluorescent proteins as biosensors by quenching resonance energy transfer from endogenous tryptophan: detection of nitroaromatic explosives. Biosens. Bioelectron. 48, 251–257 (2013). doi:10.​1016/​j.​bios.​2013.​03.​076 CrossRef
    8.M. Liu, W. Chen, Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 46, 68–73 (2013). doi:10.​1016/​j.​bios.​2013.​01.​073 CrossRef
    9.S. Yagur-Kroll, C. Lalush, R. Rosen, N. Bachar, Y. Moskovitz, S. Belkin, Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl. Microbiol. Biotechnol. 98(2), 885–895 (2014). doi:10.​1007/​s00253-013-4888-8 CrossRef
    10.E. Schneider, D.S. Clark, Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens. Bioelectron. 39(1), 1–13 (2013). doi:10.​1016/​j.​bios.​2012.​05.​043 CrossRef
    11.J. Zhang, Y. Sun, B. Xu, H. Zhang, Y. Gao, D. Song, A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosens. Bioelectron. 45, 230–236 (2013). doi:10.​1016/​j.​bios.​2013.​02.​008 CrossRef
    12.S. Sankaran, S. Panigrahi, S. Mallik, Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens. Actuators B 155(1), 8–18 (2011). doi:10.​1016/​j.​snb.​2010.​08.​003 CrossRef
    13.S. Pavan, F. Berti, Short peptides as biosensor transducers. Anal. Bioanal. Chem. 402(10), 3055–3070 (2012). doi:10.​1007/​s00216-011-5589-8 CrossRef
    14.Y. Zhang, C.Y. Wu, S.W. Guo, J.Y. Zhang, Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev. 2(1), 27–45 (2013). doi:10.​1515/​ntrev-2012-0078 CrossRef
    15.Y. Cui, S.N. Kim, R.R. Naik, M.C. McAlpine, Biomimetic peptide nanosensors. Acc. Chem. Res. 45(5), 696–704 (2012). doi:10.​1021/​ar2002057 CrossRef
    16.K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors. Chem. Rev. 111(6), 3828–3857 (2011). doi:10.​1021/​cr100313v CrossRef
    17.G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for sensing and destroying pesticides. Chem. Rev. 112(10), 5317–5338 (2012). doi:10.​1021/​cr300020c CrossRef
    18.P.Y. Ren, X.L. Zhu, J.Y. Han, J.Y. Xu, L. Ma et al., Synthesis and diameter-dependent thermal conductivity of InAs nanowires. Nano-Micro Lett. 6(4), 301–306 (2014). doi:10.​1007/​s40820-014-0002-8 CrossRef
    19.P.P. Jia, J. Yang, A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing. Nanoscale 6(15), 8836–8843 (2014). doi:10.​1039/​C4NR01411A CrossRef
    20.M. Li, S.K. Cushing, J. Zhang, S. Suri, R. Evans, W.P. Petros, L.F. Gibson, D. Ma, Y. Liu, N. Wu, Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7(6), 4967–4976 (2013). doi:10.​1021/​nn4018284 CrossRef
    21.J.A. Ruemmele, W.P. Hall, L.K. Ruvuna, R.P. Van Duyne, A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal. Chem. 85(9), 4560–4566 (2013). doi:10.​1021/​ac400192f CrossRef
    22.J. Wu, X.X. Lu, Q.N. Zhu, J.W. Zhao, Q.S. Shen, L. Zhan, W.H. Ni, Angle-resolved plasmonic properties of single gold nanorod dimers. Nano-Micro Lett. 6(4), 372–380 (2014). doi:10.​1007/​s40820-014-0011-7 CrossRef
    23.M.R. Gartia, A. Hsiao, A. Pokhriyal, S. Seo, G. Kulsharova, B.T. Cunningham, T.C. Bond, G.L. Liu, Colorimetric plasmon resonance imaging using nano lycurgus cup arrays. Adv. Opt. Mater. 1(1), 68–76 (2013). doi:10.​1002/​adom.​201200040 CrossRef
    24.J.W. Jaworski, D. Raorane, J.H. Huh, A. Majumdar, S.W. Lee, Evolutionary screening of biomimetic coatings for selective detection of explosives. Langmuir 24(9), 4938–4943 (2008). doi:10.​1021/​la7035289 CrossRef
    25.J.S. Kee, S.Y. Lim, A.P. Perera, Y. Zhang, M.K. Park, Plasmonic nanohole arrays for monitoring growth of bacteria and antibiotic susceptibility test. Sens. Actuators B 182, 576–583 (2013). doi:10.​1016/​j.​snb.​2013.​03.​053 CrossRef
    26.P. Jia, H. Jiang, J. Sabarinathan, J. Yang, Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance. Nanotechnology 24(19), 195501 (2013). doi:10.​1088/​0957-4484/​24/​19/​195501 CrossRef
    27.D. Zhang, Y. Lu, J. Jiang, Q. Zhang, Y. Yao, P. Wang, B. Chen, Q. Cheng, G.L. Liu, Q. Liu, Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays. Biosens. Bioelectron. 67, 237–242 (2015). doi:10.​1016/​j.​bios.​2014.​08.​022 CrossRef
    28.M.C. Rodriguez, A.N. Kawde, J. Wang, Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chem. Commun. 34, 4267–4269 (2005). doi:10.​1039/​b506571b CrossRef
    29.F. Lisdat, D. Schafer, The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391(5), 1555–1567 (2008). doi:10.​1007/​s00216-008-1970-7 CrossRef
    30.F. Vollmer, L. Yang, Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1(3–4), 267–291 (2012). doi:10.​1515/​nanoph-2012-0021
    31.J.C. Vidal, L. Bonel, A. Ezquerra, S. Hernandez, J.R. Bertolin, C. Cubel, J.R. Castillo, Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosens. Bioelectron. 49, 146–158 (2013). doi:10.​1016/​j.​bios.​2013.​05.​008 CrossRef
    32.S.M. Borisov, O.S. Wolfbeis, Optical biosensors. Chem. Rev. 108(2), 423–461 (2008). doi:10.​1021/​cr068105t CrossRef
    33.X. Sun, L. Qiao, X.Y. Wang, A novel immunosensor based on Au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface. Nano-Micro Lett. 5(3), 191–201 (2013). doi:10.​5101/​nml.​v5i3.​p191-201 CrossRef
    34.C.I. Cheng, Y.P. Chang, Y.H. Chu, Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem. Soc. Rev. 41(5), 1947–1971 (2012). doi:10.​1039/​C1CS15168A CrossRef
    35.D. Compagnone, G.C. Fusella, M. Del Carlo, P. Pittia, E. Martinelli, L. Tortora, R. Paolesse, C. Di Natale, Gold nanoparticles-peptide based gas sensor arrays for the detection of foodaromas. Biosens. Bioelectron. 42, 618–625 (2013). doi:10.​1016/​j.​bios.​2012.​10.​096 CrossRef
    36.Y. Ma, S. Wang, L. Wang, Nanomaterials for luminescence detection of nitroaromatic explosives. TrAC Trends Anal. Chem. 65, 13–21 (2015). doi:10.​1016/​j.​trac.​2014.​09.​007 CrossRef
    37.S. Huang, Q. He, S. Xu, L. Wang, Polyaniline-based photothermal paper sensor for sensitive and selective detection of 2, 4, 6-trinitrotoluene. Anal. Chem. 87(10), 5451–5456 (2015). doi:10.​1021/​acs.​analchem.​5b01078 CrossRef
    38.M. Bai, S. Huang, S. Xu, G. Hu, L. Wang, Fluorescent nanosensors via photoinduced polymerization of hydrophobic inorganic quantum dots for the sensitive and selective detection of nitroaromatics. Anal. Chem. 87(4), 2383–2388 (2015). doi:10.​1021/​ac504322s CrossRef
    39.X. Guan, L.Q. Gu, S. Cheley, O. Braha, H. Bayley, Stochastic sensing of TNT with a genetically engineered pore. ChemBioChem 6(10), 1875–1881 (2005). doi:10.​1002/​cbic.​200500064 CrossRef
    40.Z. Kuang, S.N. Kim, W.J. Crookes-Goodson, B.L. Farmer, R.R. Naik, Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano 4(1), 452–458 (2010). doi:10.​1021/​nn901365g CrossRef
    41.Y. Li, R. Afrasiabi, F. Fathi, N. Wang, C. Xiang, R. Love, Z. She, H.-B. Kraatz, Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosens. Bioelectron. 58, 193–199 (2014). doi:10.​1016/​j.​bios.​2014.​02.​045 CrossRef
    42.W. Su, M. Cho, J.-D. Nam, W.-S. Choe, Y. Lee, Highly sensitive electrochemical lead ion sensor harnessing peptide probe molecules on porous gold electrodes. Biosens. Bioelectron. 48, 263–269 (2013). doi:10.​1016/​j.​bios.​2013.​04.​031 CrossRef
    43.J.V. Rushworth, A. Ahmed, H.H. Griffiths, N.M. Pollock, N.M. Hooper, P.A. Millner, A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens. Bioelectron. 56, 83–90 (2014). doi:10.​1016/​j.​bios.​2013.​12.​036 CrossRef
  • 作者单位:Diming Zhang (1)
    Qian Zhang (1)
    Yanli Lu (1)
    Yao Yao (1)
    Shuang Li (1)
    Jing Jiang (2)
    Gang Logan Liu (2)
    Qingjun Liu (1)

    1. Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People’s Republic of China
    2. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
In this study, a nanobiosensor for detecting explosives was developed, in which the peptide was synthesized with trinitrotoluene (TNT)-specific sequence and immobilized on nanodevice by Au–S covalent linkage, and the nanocup arrays were fabricated by nanoimprint and deposited with Au nanoparticles to generate localized surface plasmon resonance (LSPR). The device was used to monitor slight change from specific binding of 2,4,6-TNT to the peptide. With high refractive index sensing of ~104 nm/RIU, the nanocup device can detect the binding of TNT at concentration as low as 3.12 × 10−7 mg mL−1 by optical transmission spectrum modulated by LSPR. The nanosensor is also able to distinguish TNT from analogs of 2,4-dinitrotoluene and 3-nitrotoluene in the mixture with great selectivity. The peptide-based nanosensor provides novel approaches to design versatile biosensor assays by LSPR for chemical molecules. Keywords Nanocup arrays Peptide 2,4,6-trinitrotoluene (TNT) Localized surface plasmon resonance (LSPR) Nanosensor

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700