Mechanism Insights into Second-Order Nonlinear Optical Responses of Anionic Metal Clusters
详细信息    查看全文
  • 作者:Qiaohong Li (1)
    Kechen Wu (1) wkc@fjirsm.ac.cn
    Rongjian Sa (1)
    Yongqin Wei (1)
  • 关键词:Density functional calculations – ; Charge transfer – ; Metal– ; metal interactions – ; Nonlinear optics
  • 刊名:Journal of Cluster Science
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:22
  • 期:3
  • 页码:365-380
  • 全文大小:2.1 MB
  • 参考文献:1. J. Zyss, in J. Zyss (ed.), Molecular Nonlinear Optics: Materials, Physics and Devices (Academic Press, New York, 1994).
    2. M. G. Papadopoulos, A. J. Sadlej and J. Leszczynski (eds.) Nonlinear Optical Properties of Matter from Molecules to Condensed Phases (Springer, Dordrecht, 2006).
    3. C. R. Moylan, B. J. McNelis, L. C. Nathan, M. A. Marques, E. L. Hermstad, and B. A. Brichler (2004). J. Org. Chem. 69, 8239–8243.
    4. S. Kato, T. Matsumoto, M. Shigeiwa, H. Gorohmaru, S. Maeda, T. Ishi-i, and S. Mataka (2006). Chem. Eur. J. 12, 2303–2317.
    5. Y. Cui, G. Qian, L. Chen, Z. Wang, J. Gao, and M. Wang (2006). J. Phys. Chem. B 110, 4105–4110.
    6. E. L. Spitler and M. M. Haley (2008). Org. Biomol. Chem. 6, 1569–1576.
    7. D. S. Chemla and J. Zyss Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, New York, 1987).
    8. H. S. Nalwa and S. Miyata (eds.), Nonlinear Optics of Organic Molecules and Polymers (CRS Press, New York 1997).
    9. S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J.-L. Bredas, and B. M. Pierce (1994). Science 265, 632–635.
    10. J. J. Wolff, D. Langle, D. Hillenbrand, R. Wortmann, R. Matschiner, C. Glania, and P. Kramer (1997). Adv. Mater. 9, 138–143.
    11. P. G. Lacroix, I. Malfant, G. Iftime, A. C. Razus, K. Nakatani, and J. A. Delaire (2000). Chem. Eur. J. 6, 2599–2608.
    12. J. Brunel, I. Ledoux, J. Zyss, and B. M. Lanchard-Desce (2001). Chem. Commun. 923–24.
    13. J. Brunel, O. Mongin, A. Jutand, I. Ledoux, J. Zyss, and M. Blanchard-Desce (2003). Chem. Mater. 15, 4139.
    14. T. G. Goodson (2005). Acc. Chem. Res. 38, 99–107.
    15. G. Hennrich, M. T. Murillo, P. Prados, H. Al-Saraierh, A. El-Dali, D. W. Thompson, J. Collins, P. E. Georghiou, A. Teshome, I. Asselberghs, and K. Clays (2007). Chem. Eur. J. 13, 7753–7761.
    16. M. L. H. Green, S. R. Marder, M. E. Thompson, J. A. Bandy, D. Bloor, P. V. Kolinsky, and R. J. Jones (1987). Nature 330, 360.
    17. H. S. Nalwa (1991). Appl. Organomet. Chem. 5, 349.
    18. S. Di Bella (2001). Chem. Soc. Rev. 30, 355–366.
    19. F. Tessore, D. Roberto, R. Ugo, P. Mussini, S. Quici, I. Ledoux-Rak, and J. Zyss (2003). Angew. Chem. Int. Ed. 42, 456–459.
    20. C. E. Powell and M. G. Humphery (2004). Coord. Chem. Rev. 248, 725–756.
    21. E. Cariati, M. Pizzotti, D. Roberto, F. Tessore, and R. Ugo (2006). Coord. Chem. Rev 250, 1210–1233.
    22. B. J. Coe (2006). Acc. Chem. Res. 39, 383–393.
    23. J. P. L. Morrall, M. G. Humphrey, G. T. Dalton, M. P. Cifuentes, and M. Samoc, in M. G. Padadopoulos, A. J. Sadlej, and J. Leszczynski (eds.), Nonlinear Optical Properties of Matter, From Molecules to Condensed Phases (Springer, Dordrecht, The Netherlands, 2006), pp. 537–570.
    24. M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, and E. M. Ni Mhuircheartaigh (2007). Adv. Mater. 19, 2737–2774.
    25. T. V. Duncan, K. Song, S.-T. Hung, I. Miloradovic, A. Nayak, A. Persoons, T. Verbiest, M. J. Therien, and K. Clays (2008). Angew. Chem. Int. Ed. 47, 2978–2981.
    26. D. R. Kanis, P. G. Lacroix, M. A. Ratner, and T. J. Marks (1994). J. Am. Chem. Soc. 116, 10089–10102.
    27. Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K.-Y. Jen, L. R. Dalton, and B. H. Robinson (2005). J. Am. Chem. Soc. 127, 2758–2766.
    28. B. J. Coe, J. A. Harris, B. S. Brunschwig, I. Asselberghs, K. Clays, J. J. Garin, and J. Orduna (2005). J. Am. Chem. Soc. 127, 13399–13410.
    29. D. Roberto, R. Ugo, F. Tessore, E. Lucenti, S. Quici, S. Vezza, P. C. Fantucci, I. Invernizzi, S. Bruni, I. Ledoux-Rak, and J. Zyss (2002). Organometallic 21, 161–170.
    30. K. Senechal, O. Maury, H. Le Bozec, I. Ledoux, and J. Zyss (2002). J. Am. Chem. Soc. 124, 4561–4562.
    31. L. Rigamonti, F. Demartin, A. Forni, S. Righetto, and A. Pasini (2006). Inorg. Chem. 45, 10976–10989.
    32. H. Fukui, R. Kishi, T. Minami, H. Nagai, H. Takahashi, T. Kubo, K. Kamada, K. Ohta, B. Champagne, M. Botek, and M. Masayoshi Nakano (2008). J. Phys. Chem. A 112, 8423–8429.
    33. T. J. J. Muller, A. Netz, M. Ansorge, E. Schmalzlin, C. Brauchle, and K. Meerholz (1999). Organometallic 18, 5066–5074.
    34. D. Roberto, R. Ugo, S. Bruni, E. Cariati, F. Cariati, P. C. Fantucci, I. Invernizzi, S. Quici, I. Ledoux, and J. Zyss (2000). Organometallic 19, 1775–1788.
    35. O. Maury, L. Viau, K. Senechal, B. Corre, J. P. Guegan, T. Renouard, I. Ledoux, J. Zyss, and H. Le Bozec (2004). Chem. Eur. J. 10, 4454–4466.
    36. L. Labat, J.-F. Lamere, I. Sasaki, P. G. Lacroix, L. Vendier, I. Asselberghs, J. Perez-Moreno, and K. Clays (2006). Eur. J. Inorg. Chem. 3105–3113.
    37. P. Nguyen, G. Lesley, T. B. Marder, I. Ledoux, and J. Zyss (1997). Chem. Mater. 9, 406–408.
    38. A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, S. Houbrechts, T. Wada, H. Sasabe, and A. Persoons (1999). J. Am. Chem. Soc. 121, 1405–1406.
    39. T. Weyland, I. Ledoux, S. Brasselet, J. Zyss, and C. Lapinte (2000). Organometallic 19, 5235–5237.
    40. M. Pizzotti, R. Ugo, C. Dragonetti, and E. Annoni (2003). Organometallic 22, 4001–4011.
    41. K. Wu, J. Li, and C. Lin (2004). Chem. Phys. Lett. 388, 353–357.
    42. K. Wu, R. Sa, and C. Lin (2005). New J. Chem. 29, 362.
    43. Q. Li, R. Sa, Y. Wei, and K. Wu (2008). J. Phys. Chem. A 112, 4965–4972.
    44. A. Rosa, E. J. Baerends, S. J. A. van Gisbergen, E. van Lenthe, J. A. Groeneveld, and J. G. Snijders (1999). J. Am. Chem. Soc. 121, 10356–10365.
    45. J. M. Poblet, X. Lopez, and C. Bo (2003). Chem. Soc. Rev. 32, 297–308.
    46. A. Karton, M. A. Iron, M. E. van der Boom, and J. M. L. Martin (2005). J. Phys. Chem. A 109, 5454–5462.
    47. Q. Li, R. Sa, C. Liu, and K. Wu (2007). J. Phys. Chem. A 111, 7925–7932.
    48. W. Hieringer and E. J. Baerends (2006). J. Phys. Chem. A 110, 1014–1021.
    49. J. L. Oudar and D. S. Chemla (1977). J. Chem. Phys 66, 2664–2668.
    50. P. N. Prasad and D. J. Williams Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
    51. T. M. Inerbaev, R. V. Belosludov, H. Mizuseki, M. Takahashi, and Y. Kawazoe (2006). J. Chem. Theory Comput. 2, 1325–1334.
    52. S. R. Acott, C. D. Garner, J. R. Nicholson, and W. Clegg (1983). J. Chem. Soc. Dalton Trans. 713–719.
    53. N. Y. Zhu, Y. F. Zheng, and X. T. Wu (1990). Inorg. Chem 29, 2705–2707.
    54. A. D. Becke (1988). Phys. Rev. A 38, 3098.
    55. J. P. Perdew (1998). Phys. Rev. B 33, 8822.
    56. D. M. Ceperly and B. J. Alder (1980). Phys. Rev. Lett. 45, 566.
    57. S. H. Vosko, L. Wilk, and M. Nusair (1980). Can. J. Phys. 58, 1200.
    58. H. Stoll, C. M. E. Pavlidou, and H. Preuss (1978). Theoret. Chim. Acta 49, 143.
    59. E. van Lenthe, E. J. Baerends, and J. G. Snijders (1993). J. Chem. Phys. 99, 4597.
    60. E. van Lenthe, E. J. Baerends, and J. G. Snijders (1996). J. Chem. Phys. 105, 6505.
    61. E. van Lenthe, A. E. Ehlers, and E. J. Baerends (1999). J. Chem. Phys. 110, 8943.
    62. A. Klamt (1995). J. Phys. Chem. 99, 2224.
    63. A. Klamt and V. Jones (1996). J. Chem. Phys. 105, 9972.
    64. C. C. Pye and T. Ziegler (1999). Theor. Chem. Acc 101, 396.
    65. A. Klamt and G. Sch眉眉rmann (1993). J. Chem. Soc.: Perkin Trans. 2, 799–805.
    66. S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends (1998). J. Chem. Phys. 109, 10644–10656.
    67. C. Fonseca-Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends (1998). Theor. Chem. Acc. 99, 391.
    68. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca-Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler (2001). J. Comput. Chem. 22, 931.
    69. S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends (1998). J. Chem. Phys. 109, 10644.
    70. S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends (1999). Comput. Phys. Commun. 118, 119.
    71. M. Gruning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends (2001). J. Chem. Phys. 114, 652.
    72. R. van Leeuwen and E. J. Baerends (1994). Phys. Rev. A 49, 2421.
    73. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Rev. Lett. 77, 3865.
    74. J. P. Perdew, K. Burke, and M. Ernzerhof (1997). Phys. Rev. Lett. 78, 1396.
  • 作者单位:1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 People鈥檚 Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Inorganic Chemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8862
文摘
We present the first-principle calculations on the electronic excitations and second-order properties in solution phase of two typical inorganic trinuclear anionic clusters, [MoCu2S4(SPh)2]2− and [Mo2CuS4]1−(edt)2(PPh3) (edt=1,2-ethanedithiolato) in the framework of density functional theory (DFT). The computed excitation energies are in good agreement with the outcome of the measurements. The predicted values of the molecular quadratic hyperpolarizabilities are of the comparable order of those of the typical organometallic chromophores. We demonstrate the significant contributions to the second-order responses from the charge transfers between the metal centers (MMCT) which are ascribed to the direct metal–metal bonding interactions in these two charged clusters. This meaningful ligand-independent mechanism for the second-order response largely relates to metal–metal bonding strength, and the understanding will benefit to the future design of the new-generation molecular based nonlinear optical materials and optoelectronic devices by means of the conscious tuning of metal–metal interactions and metal-core structures of inorganic polynuclear clusters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700