Effect of chromium carbide coating on thermal properties of short graphite fiber/Al composites
详细信息    查看全文
  • 作者:Tingting Liu (1)
    Xinbo He (1)
    Qian Liu (1)
    Shubin Ren (1)
    Qiping Kang (1)
    Lin Zhang (1)
    Xuanhui Qu (1)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:49
  • 期:19
  • 页码:6705-6715
  • 全文大小:1,738 KB
  • 参考文献:1. Mallik S, Ekere N, Best C, Bhatti R (2011) Investigation of thermal management materials for automotive electronic control units. Appl Therm Eng 31:355-62 CrossRef
    2. Prieto R, Molina JM, Narciso J, Louis E (2008) Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scr Mater 59:11-4 CrossRef
    3. Ullbrand JM, Córdoba JM, Tamayo-Ariztondo J et al (2010) Thermomechanical properties of copper–carbon nanofibre composites prepared by spark plasma sintering and hot pressing. Compos Sci Technol 70:2263-268 CrossRef
    4. Ren SB, Qu XH, Guo J, He XB, Qin ML, Shen XY (2009) Net-shape forming and properties of high volume fraction SiCp/Al composites. J Alloys Compd 484:256-62 CrossRef
    5. Weber L, Sinicco G, Molina JM (2010) Influence of processing route on electrical and thermal conductivity of Al/SiC composites with bimodal particle distribution. J Mater Sci 45:2203-209 CrossRef
    6. Xue C, Yu JK, Zhu XM (2011) Thermal properties of diamond/SiC/Al composites with high volume fractions. Mater Des 32:4225-229 CrossRef
    7. Yang WL, Zhou LP, Peng K, Zhu JJ, Wan L (2013) Effect of tungsten addition on thermal conductivity of graphite/copper composites. Compos Part B 55:1- CrossRef
    8. Wu JH, Zhang HL, Zhang Y, Wang XT (2012) Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater Des 41:344-48 CrossRef
    9. Yamanaka S, Kadokura H, Kawasaki A et al (2006) Fabrication and thermal evaluation of carbon nanotube/aluminium composite by spark plasma sintering method. J Jpn Soc Powder Powder Metall 53:965-70 CrossRef
    10. Gallego NC, Edie DD (2001) Structure–property relationships for high thermal conductivity carbon fibers. Compos Part A 32:1031-038 CrossRef
    11. Tao ZC, Guo QG, Gao XQ, Liu L (2012) Graphite fiber/copper composites with near-zero thermal expansion. Mater Des 33:372-75 CrossRef
    12. Veillère A, Heintz JM, Chandra N et al (2012) Influence of the interface structure on the thermo-mechanical properties of Cu-X (X?=?Cr or B)/carbon fiber composites. Mater Res Bull 47:375-80 CrossRef
    13. Etter T, Schulz P, Weber M et al (2007) Aluminium carbide formation in interpenetrating graphite/aluminium composites. Mater Sci Eng A 448:1- CrossRef
    14. Wang X, Chen GQ, Li B, Wu GH, Jiang DM (2009) Microstructure and mechanical properties of graphite fiber-reinforced high-purity aluminum matrix composite. J Mater Sci 44:4303-407 CrossRef
    15. Pelleg J, Ashkenazi D, Ganor M (2000) The influence of a third element on the interface reactions in metal–matrix composites (MMC): Al–graphite system. Mater Sci Eng A 281:239-47 CrossRef
    16. Ure?a A, Rams J, Escallera MD, Sánchez M (2007) Effect of copper electroless coatings on the interaction between a molten Al–Si–Mg alloy and coated short carbon fibers. Compos Part A 38:1947-956 CrossRef
    17. Mizuuchi K, Inoue K, Agari Y et al (2011) Processing of diamond particle dispersed aluminum matrix composites in continuous solid–liquid co-existent state by SPS and their thermal properties. Compos Part B 42:825-31 CrossRef
    18. Mizuuchi K, Inoue K, Agari Y et al (2011) Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid–liquid co-existent state by SPS. Compos Part B 42:1029-034 CrossRef
    19. Tang YP, Liu L, Li WW, Shen B, Hu WB (2009) Interface characteristics and mechanical properties of short carbon fibers/Al composites with different coatings. Appl Surf Sci 255:4393-400 CrossRef
    20. Tan ZQ, Li ZQ, Fan GL et al (2013) Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater Des 47:160-66 CrossRef
    21. Zhang Y, Zhang HL, Wu JH, Wang XT (2011) Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles. Scr Mater 65:1097-100 CrossRef
    22. Kang QP, He XB, Ren SB et al (2013) Preparation of high thermal conductivity copper–diamond composites using molybdenum carbide-coated diamond particles. J Mater Sci 48:6133-140 CrossRef
    23. Li XK, Dong ZJ, Westwood A et al (2008) Preparation of a titanium carbide coating on carbon fibre using a molten salt method. Carbon 46:305-09 CrossRef
    24. Dong ZJ, Li XK, Yuan GM, Cui ZW, Cong Y, Westwood A (2013) Tensile strength, oxidation resistance and wettability of carbon fibers coated with a TiC layer using a molten salt method. Mater Des 9:156-64 CrossRef
    25. Liu TT, He XB, Liu Q et al (2013) Fabrication of Short Graphite Fiber Preforms for Liquid Metal Infiltration. J Mater Eng Perform 22:1649-654 CrossRef
    26. Zhao C, Wang J (2013) Enhanced mechanical properties in diamond/Cu composites with chromium carbide coating for structural applications. Mater Sci Eng A 588:221-27 CrossRef
    27. Nan CW, Li XP, Birringer R (2000) Inverse problem for composites with imperfect interface: determination of interfacial thermal resistance, thermal conductivity of constituents, and microstructural parameters. J Am Ceram Soc 83:848-54 CrossRef
    28. Liu Q, He XB, Ren SB, Liu TT, Kang QP, Qu XH (2013) Effect of titanium carbide coating on the microstructure and thermal conductivity of short graphite fiber/copper composites. J Mater Sci 48:5810-817 CrossRef
    29. Schmidt AJ, Collons KC, Minnich AJ, Cheng G (2010) Thermal conductance and phonon transmissivity of metal-graphite interfaces. J Appl Phys 107:104907-104907-5
    30. Nan CW, Liu G, Lin YH, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85:3549-551 CrossRef
    31. Xue C, Yu JK (2013) Enhanced thermal conductivity in diamond/aluminum composites: comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface. Surf Coat Technol 217:46-0 CrossRef
    32. Kida M, Weber L, Monachon C, Mortensen A (2011) Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites. J Appl Phys 109:064907-64907-64907-64908 CrossRef
    33. Jiang C (2008) First-principles study of structural, elastic, and electronic properties of chromium carbides. Appl Phys Lett 92:041909-041909-3
    34. Stoner R, Maris H (1993) Kapitza conductance and heat flow between solids at temperature from 50 to 300?K. Phys Rev B 48:16373 CrossRef
    35. Prasher R (2008) Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 77:075424 CrossRef
    36. Chu K, Jia CC (2013) On the thermal expansion of CNT/Cu composites for electronic packaging applications. Appl Phys A 111:439-43 CrossRef
  • 作者单位:Tingting Liu (1)
    Xinbo He (1)
    Qian Liu (1)
    Shubin Ren (1)
    Qiping Kang (1)
    Lin Zhang (1)
    Xuanhui Qu (1)

    1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 30 Xue Yuan Road, Beijing, 100083, China
  • ISSN:1573-4803
文摘
A chromium carbide coating was synthesized onto graphite fibers by molten salts method to improve the interfacial bonding and thermal properties of short graphite fiber/Al composites which were fabricated by vacuum pressure infiltration technique. The graphite fiber/Al composites with different thicknesses of chromium carbide coatings were prepared through varying plating times to investigate the influence of chromium carbide layer on the microstructures and thermal properties of the composites. The combined Maxwell–Garnett effective medium approach and acoustic mismatch model schemes were used to theoretically predict thermal conductivities of the composites. The results indicated that the chromium carbide coating formed on graphite fiber surface in molten salts consists mainly of the Cr7C3 phase. The Cr7C3-coating layer with plating time of 60?min and thickness of 0.5?μm was found to be most effective in improving the interfacial bonding and decreasing the interfacial thermal resistance between graphite fiber and aluminum matrix. The 40?vol% Cr7C3-coated graphite fiber/Al composite with Cr7C3 thickness of 0.5?μm exhibited 45.4?% enhancement in in-plane thermal conductivity of 221?W?m??K? compared to that of uncoated composite, as well as the coefficient of thermal expansion of 9.4?×?10??K?, which made it as very interesting material for thermal management applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700