Preparation of high thermal conductivity copper–diamond composites using molybdenum carbide-coated diamond particles
详细信息    查看全文
  • 作者:Qiping Kang (1)
    Xinbo He (1)
    Shubin Ren (1)
    Lin Zhang (1)
    Mao Wu (1)
    Tingting Liu (1)
    Qian Liu (1)
    Caiyu Guo (1)
    Xuanhui Qu (1)
  • 刊名:Journal of Materials Science
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:48
  • 期:18
  • 页码:6133-6140
  • 全文大小:552KB
  • 参考文献:1. Feng H, Yu JK, Tan W (2010) Mater Chem Phys 124:851. doi:10.1016/j.matchemphys.2010.08.003 CrossRef
    2. Weber L, Tavangar R (2007) Scr Mater 57:988. doi:10.1016/j.scriptamat.2007.08.007 CrossRef
    3. Schubert T, Ciupinski L, Zielinski W, Michalski A, Wei?garber T, Kieback B (2008) Scr Mater 58:263. doi:10.1016/j.scriptamat.2007.10.011 CrossRef
    4. Abyzov AM, Kidalov SV, Shakhov FM (2011) J Mater Sci 46:1424. doi:10.1007/s10853-010-4938-x CrossRef
    5. Dong YH, He XB, Xu L, Qu XH (2011) J Mater Sci 46:3862. doi:10.1007/s10853-011-5307-0 CrossRef
    6. Sinha V, Spowart JE (2012) J Mater Sci. doi:10.1007/s10853-012-6878-0
    7. Fan YM, Guo H, Xu J, Chu K, Zhu XX, Jia CC (2011) Int J Miner 18:472. doi:10.1007/s12613-011-0465-2
    8. Schubert T, Trindade B, Wei?garber T, Kieback B (2008) Mater Sci Eng A 475:39. doi:10.1016/j.msea.2006.12.146 CrossRef
    9. Ren SB, Shen XY, Guo CY, Liu N, Zang JB, He XB, Qu XH (2011) Compos Sci Technol 71:1550. doi:10.1016/j.compscitech.2011.06.012 CrossRef
    10. Mayerhofer KE, Schrank C, Eisenmenger C, Hutter H (2005) Appl Surf Sci 252:266. doi:10.1016/j.apsusc.2005.02.018 CrossRef
    11. Schwarz B, Schrank C, Eisenmenger C, Pollach M, Rosner M, Neubauer E (2006) Surf Coat Technol 200:4891. doi:10.1016/j.surfcoat.2005.04.042 CrossRef
    12. Shao WZ, Ivanov VV, Zhen L, Cui YS, Wang Y (2004) Mater Lett 58:146. doi:10.1016/S0167-577x(03)00433-6 CrossRef
    13. Chu K, Liu ZF, Jia CC, Chen H, Liang XB, Gao WJ (2010) J Alloys Compd 490:453. doi:10.1016/j.jallcom.2009.10.040 CrossRef
    14. Rape A, Liu X, Kulkarni A, Singh J (2012) J Mater Sci. doi:10.1007/s10853-012-6868-2
    15. Ekimov EA, Suetin NV, Popovich AF, Ralchenko VG (2008) Diam Relat Mater 17:838. doi:10.1016/j.diamond.2007.12.051 CrossRef
    16. Balandin AA (2011) Nat Mater 10:569. doi:10.1038/nmat3064 CrossRef
    17. Shamsa M, Ghosh S, Calizo I, Ralchenko V, Popovich A, Balandin AA (2008) J Appl Phys 103:083538. doi:10.1063/1.2907865 CrossRef
    18. Liu WL, Shamsa M, Calizo I, Balandin AA (2006) Appl Phys Lett 89:171915. doi:10.1063/1.2364130 CrossRef
    19. Yamamoto Y, Imai T, Tanabe K, Tsuno T, Kumazawa Y, Fujimori N (1997) Diam Relat Mater 6:1057. doi:10.1016/S0925-9635(96)00772-8 CrossRef
    20. Yang ZH, Cai PJ, Shi L, Gu YL, Chen LY, Qian YT (2006) J Solid State Chem 179:29. doi:10.1016/j.jssc.2005.09.037 CrossRef
    21. Li XK, Dong ZJ, Westwood A, Brown A, Zhang SW, Brydson R (2008) Carbon 46:305. doi:10.1016/j.carbon.2007.11.020 CrossRef
    22. Zhang Y, Zhang HL, Wu JH, Wang XT (2011) Scr Mater 65:1097. doi:10.1016/j.scriptamat.2011.09.028 CrossRef
    23. Xia Y, Song YQ, Lin CG, Cui S, Fang ZZ (2009) Trans Nonferr Met Soc 19:1161. doi:10.1016/S1003-6326(08)60422-7 CrossRef
    24. Hasselman DPH, Lloyd FJ (1987) J Compos Mater 21:508. doi:10.1177/002199838702100602 CrossRef
    25. Swartz ET, Pohl RO (1989) Rev Mod Phys 61:605. doi:10.1103/RevModPhys.61.605 CrossRef
    26. Goyal V, Subrina S, Nika DL, Balandin AA (2010) Appl Phys Lett 97: 031904. doi:10.1063/1.3463455
    27. Yan Z, Liu GX, Khan JM, Balandin AA (2012) Nat Commun 3:827. doi:10.1038/ncomms1828 CrossRef
    28. Yu J, Liu GX, Sumant AV, Goyal V, Balandin AA (2012) Nano Lett 12:1603. doi:10.1021/nl204545q CrossRef
    29. Every AG, Tzou Y, Hasselman DPH, Raj R (1992) Acta Metall Mater 40:123. doi:10.1016/0956-7151(92)90205-S CrossRef
    30. Hopkins PE, Beechem TE (2010) Nanoscale Microscale Thermophys Eng 14:51. doi:10.1080/15567261003601805 CrossRef
    31. Prasher RS, Phelan PE (2001) J Heat Transfer 123:105. doi:10.1115/1.1338138 CrossRef
    32. Hopkins PE, Kassebaum JL, Norris PM (2009 J Appl Phys. doi:10.1063/1.3068476
    33. Majumdar A, Reddy P (2004) Appl Phys Lett 84:4768. doi:10.1063/1.1758301 CrossRef
    34. Hopkins PE, Norris PM, Stevens RJ, Beechem TE, Graham S (2008) J Heat Transfer. doi:10.1115/1.2897344
  • 作者单位:Qiping Kang (1)
    Xinbo He (1)
    Shubin Ren (1)
    Lin Zhang (1)
    Mao Wu (1)
    Tingting Liu (1)
    Qian Liu (1)
    Caiyu Guo (1)
    Xuanhui Qu (1)

    1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
文摘
Molybdenum carbide (Mo2C) coatings on diamond particles were proposed to improve the interfacial bonding between diamond particles and copper. The Mo2C-coated diamond particles were prepared by molten salts method and the copper–diamond composites were obtained by vacuum pressure infiltration of Mo2C-coated diamond particles with pure copper. The structures of the coatings and composites were investigated using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicated that the Mo2C coatings effectively improved the wettability between diamond particles and copper matrix, and Mo2C intermediate layers were proved to decrease the interfacial thermal resistance of composites. The thermal conductivity of the composite reached 608?Wm??K? with 65?vol.% Mo2C-coated diamond, which was much higher than that with uncoated diamond. The greatly enhanced thermal conductivity is ascribed to the 1-μm-thick Mo2C coatings. Mo2C coatings on diamond particles are proved to be an effective way to enhance the thermal conductivities of copper–diamond composites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700