An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes
详细信息    查看全文
  • 作者:W. Boscheri ; M. Dumbser
  • 关键词:Arbitrary ; Lagrangian–Eulerian (ALE) ; Finite volume schemes ; Quadrature ; free flux integration ; WENO reconstruction on moving unstructured meshes ; High order of accuracy in space and time ; Local rezoning ; Hydrodynamics
  • 刊名:Journal of Scientific Computing
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:66
  • 期:1
  • 页码:240-274
  • 全文大小:13,369 KB
  • 参考文献:1.Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)MathSciNet CrossRef MATH
    2.Balsara, D.S.: A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012)MathSciNet CrossRef MATH
    3.Balsara, D.S.: Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 7504–7517 (2012)MathSciNet CrossRef
    4.Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992)MathSciNet CrossRef MATH
    5.Berndt, M., Breil, J., Galera, S., Kucharik, M., Maire, P.H., Shashkov, M.: Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian–Eulerian methods. J. Comput. Phys. 230, 6664–6687 (2011)CrossRef MATH
    6.Berndt, M., Kucharik, M., Shashkov, M.J.: Using the feasible set method for rezoning in ALE. Procedia Comput. Sci. 1, 1879–1886 (2010)CrossRef
    7.Bochev, P., Ridzal, D., Shashkov, M.J.: Fast optimization-based conservative remap of scalar fields through aggregate mass transfer. J. Comput. Phys. 246, 37–57 (2013)MathSciNet CrossRef
    8.Boscheri, W., Balsara, D.S., Dumbser, M.: Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J. Comput. Phys. 267, 112–138 (2014)MathSciNet CrossRef
    9.Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian–Eulerian one-step WENO finite volume schemes on unstructured triangular meshes. Commun. Comput. Phys. 14, 1174–1206 (2013)MathSciNet
    10.Boscheri, W., Dumbser, M.: A direct arbitrary-Lagrangian–Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and nonconservative hyperbolic systems in 3D. J. Comput. Phys. 275, 484–523 (2014)MathSciNet CrossRef
    11.Boscheri, W., Dumbser, M., Balsara, D.S.: High order Lagrangian ADER-WENO schemes on unstructured meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics. Int. J. Numer. Methods Fluids 76, 737–778 (2014)MathSciNet CrossRef
    12.Boscheri, W., Dumbser, M., Zanotti, O.: High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes. J. Comput. Phys. 291, 120–150 (2015)MathSciNet CrossRef
    13.Boscheri, W., Loubère, R., Dumbser, M.: Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD Finite Volume Schemes for Multidimensional Hyperbolic Conservation Laws. J. Comput. Phys. (2015). doi:10.​1016/​j.​jcp.​2015.​03.​015
    14.Breil, J., Harribey, T., Maire, P.H., Shashkov, M.J.: A multi-material ReALE method with MOF interface reconstruction. Comput. Fluids 83, 115–125 (2013)MathSciNet CrossRef MATH
    15.Caramana, E.J., Burton, D.E., Shashkov, M.J., Whalen, P.P.: The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys. 146, 227–262 (1998)MathSciNet CrossRef MATH
    16.Carré, G., Del Pino, S., Després, B., Labourasse, E.: A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys. 228, 5160–5183 (2009)MathSciNet CrossRef MATH
    17.Cesenek, J., Feistauer, M., Horacek, J., Kucera, V., Prokopova, J.: Simulation of compressible viscous flow in time-dependent domains. Appl. Math. Comput. 219, 7139–7150 (2013)MathSciNet CrossRef MATH
    18.Cheng, J., Shu, C.W.: A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. J. Comput. Phys. 227, 1567–1596 (2007)MathSciNet CrossRef MATH
    19.Cheng, J., Toro, E.F.: A 1D conservative Lagrangian ADER scheme. Chin. J. Comput. Phys. 30, 501–508 (2013)
    20.Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230, 4028–4050 (2011)MathSciNet CrossRef MATH
    21.Claisse, A., Després, B., Labourasse, E., Ledoux, F.: A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes. J. Comput. Phys. 231, 4324–4354 (2012)MathSciNet CrossRef MATH
    22.Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2000)CrossRef
    23.Després, B., Mazeran, C.: Symmetrization of Lagrangian gas dynamic in dimension two and multimdimensional solvers. C. R. Mecanique 331, 475–480 (2003)CrossRef MATH
    24.Després, B., Mazeran, C.: Lagrangian gas dynamics in two-dimensions and Lagrangian systems. Arch. Ration. Mech. Anal. 178, 327–372 (2005)MathSciNet CrossRef MATH
    25.Diot, S., Clain, S., Loubère, R.: Improved detection criteria for the multi-dimensional optimal order detection (mood) on unstructured meshes with very high-order polynomials. Comput. Fluids 64, 43–63 (2012)MathSciNet CrossRef
    26.Diot, S., Loubère, R., Clain, S.: The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 73, 362–392 (2013)CrossRef
    27.Dobrev, V.A., Ellis, T.E., Kolev, T.V., Rieben, R.N.: Curvilinear finite elements for Lagrangian hydrodynamics. Int. J. Numer. Methods Fluids 65, 1295–1310 (2011)MathSciNet CrossRef MATH
    28.Dobrev, V.A., Ellis, T.E., Kolev, T.V., Rieben, R.N.: High order curvilinear finite elements for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 34, 606–641 (2012)MathSciNet CrossRef
    29.Dobrev, V.A., Ellis, T.E., Kolev, T.V., Rieben, R.N.: High order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics. Comput. Fluids 83, 58–69 (2013)MathSciNet CrossRef MATH
    30.Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLLC Riemann solver for unstructured meshes—with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014)MathSciNet CrossRef
    31.Dubcova, L., Feistauer, M., Horacek, J., Svacek, P.: Numerical simulation of interaction between turbulent flow and a vibrating airfoil. Comput. Vis. Sci. 12, 207–225 (2009)MathSciNet CrossRef MATH
    32.Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)MathSciNet CrossRef MATH
    33.Dumbser, M.: Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 280, 57–83 (2014)MathSciNet CrossRef
    34.Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008)MathSciNet CrossRef MATH
    35.Dumbser, M., Boscheri, W.: High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows. Comput. Fluids 86, 405–432 (2013)MathSciNet CrossRef MATH
    36.Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971–4001 (2008)MathSciNet CrossRef MATH
    37.Dumbser, M., Hidalgo, A., Castro, M., Parés, C., Toro, E.F.: FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 199, 625–647 (2010)CrossRef MATH
    38.Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007)MathSciNet CrossRef MATH
    39.Dumbser, M., Käser, M., Titarev, V.A., Toro, E.F.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226, 204–243 (2007)MathSciNet CrossRef MATH
    40.Dumbser, M., Toro, E.F.: On universal Osher-type schemes for general nonlinear hyperbolic conservation laws. Commun. Comput. Phys. 10, 635–671 (2011)MathSciNet
    41.Dumbser, M., Uuriintsetseg, A., Zanotti, O.: On arbitrary-Lagrangian–Eulerian one-step WENO schemes for stiff hyperbolic balance laws. Commun. Comput. Phys. 14, 301–327 (2013)MathSciNet
    42.Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)MathSciNet CrossRef
    43.Feistauer, M., Horacek, J., Ruzicka, M., Svacek, P.: Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom. Comput. Fluids 49, 110–127 (2011)MathSciNet CrossRef MATH
    44.Feistauer, M., Kucera, V., Prokopova, J., Horacek, J.: The ALE discontinuous Galerkin method for the simulation of air flow through pulsating human vocal folds. In: AIP Conference Proceedings, vol. 1281, pp. 83–86 (2010)
    45.Francois, M.M., Shashkov, M.J., Masser, T.O., Dendy, E.D.: A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation. Comput. Fluids 83, 126–136 (2013)MathSciNet CrossRef MATH
    46.Galera, S., Maire, P.H., Breil, J.: A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. J. Comput. Phys. 229, 5755–5787 (2010)MathSciNet CrossRef MATH
    47.Hidalgo, A., Dumbser, M.: ADER schemes for nonlinear systems of stiff advection–diffusion–reaction equations. J. Sci. Comput. 48, 173–189 (2011)MathSciNet CrossRef MATH
    48.Hirt, C., Amsden, A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227253 (1974)
    49.Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)MathSciNet CrossRef MATH
    50.Kamm, J.R., Timmes, F.X.: On efficient generation of numerically robust Sedov solutions. Technical Report LA-UR-07-2849, LANL (2007)
    51.Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods in CFD. Oxford University Press, Oxford (1999)
    52.Kidder, R.E.: Laser-driven compression of hollow shells: power requirements and stability limitations. Nucl. Fusion 1, 3–14 (1976)CrossRef
    53.Knupp, P.M.: Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—a framework for volume mesh optimization and the condition number of the Jacobian matrix. Int. J. Numer. Methods Eng. 48, 1165–1185 (2000)CrossRef MATH
    54.Kucharik, M., Breil, J., Galera, S., Maire, P.H., Berndt, M., Shashkov, M.J.: Hybrid remap for multi-material ALE. Comput. Fluids 46, 293–297 (2011)CrossRef MATH
    55.Kucharik, M., Shashkov, M.J.: One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian–Eulerian methods. J. Comput. Phys. 231, 2851–2864 (2012)MathSciNet CrossRef MATH
    56.Li, Z., Yu, X., Jia, Z.: The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two dimensions. Comput. Fluids 96, 152–164 (2014)MathSciNet CrossRef
    57.Liska, R., Shashkov, M.J., Váchal, P., Wendroff, B.: Synchronized flux corrected remapping for ALE methods. Comput. Fluids 46, 312–317 (2011)MathSciNet CrossRef MATH
    58.Liu, W., Cheng, J., Shu, C.W.: High order conservative Lagrangian schemes with Lax–Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228, 8872–8891 (2009)MathSciNet CrossRef MATH
    59.Loubère, R., Dumbser, M., Diot, S.: A new family of high order unstructured mood and ader finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun. Comput. Phys. 16, 718–763 (2014)MathSciNet
    60.Loubère, R., Maire, P.H., Váchal, P.: A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver. Procedia Comput. Sci. 1, 1931–1939 (2010)CrossRef
    61.Loubère, R., Maire, P.H., Váchal, P.: 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity. Int. J. Numer. Methods Fluids 72, 22–42 (2013)CrossRef
    62.Maire, P.H.: A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. J. Comput. Phys. 228, 2391–2425 (2009)MathSciNet CrossRef MATH
    63.Maire, P.H.: A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids. Comput. Fluids 46(1), 341–347 (2011)MathSciNet CrossRef MATH
    64.Maire, P.H.: A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids. Int. J. Numer. Methods Fluids 65, 1281–1294 (2011)MathSciNet CrossRef MATH
    65.Maire, P.H., Abgrall, R., Breil, J., Ovadia, J.: A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput. 29, 1781–1824 (2007)MathSciNet CrossRef MATH
    66.Maire, P.H., Breil, J.: A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems. Int. J. Numer. Methods Fluids 56, 1417–1423 (2007)MathSciNet CrossRef
    67.Maire, P.H., Nkonga, B.: Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics. J. Comput. Phys. 228, 799–821 (2009)MathSciNet CrossRef MATH
    68.Munz, C.D.: On Godunov-type schemes for Lagrangian gas dynamics. SIAM J. Numer. Anal. 31, 17–42 (1994)MathSciNet CrossRef MATH
    69.Noh, W.F.: Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux. J. Comput. Phys. 72, 78–120 (1987)CrossRef MATH
    70.Ortega, A.L., Scovazzi, G.: A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian–Eulerian computations with nodal finite elements. J. Comput. Phys. 230, 6709–6741 (2011)MathSciNet CrossRef MATH
    71.Peery, J.S., Carroll, D.E.: Multi-material ALE methods in unstructured grids. Comput. Methods Appl. Mech. Eng. 187, 591–619 (2000)MathSciNet CrossRef MATH
    72.Sambasivan, S.K., Shashkov, M.J., Burton, D.E.: A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids. Int. J. Numer. Methods Fluids 72, 770–810 (2013)MathSciNet CrossRef
    73.Sambasivan, S.K., Shashkov, M.J., Burton, D.E.: Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes. Comput. Fluids 83, 98–114 (2013)MathSciNet CrossRef MATH
    74.Scovazzi, G.: Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach. J. Comput. Phys. 231, 8029–8069 (2012)MathSciNet CrossRef
    75.Smith, R.W.: AUSM(ALE): a geometrically conservative arbitrary Lagrangian–Eulerian flux splitting scheme. J. Comput. Phys. 150, 268286 (1999)
    76.Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall Inc., Englewood Cliffs (1971)MATH
    77.Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17(1–4), 609–618 (2002)MathSciNet CrossRef MATH
    78.Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional nonlinear hyperbolic systems. J. Comput. Phys. 204, 715–736 (2005)MathSciNet CrossRef MATH
    79.Titarev, V.A., Tsoutsanis, P., Drikakis, D.: WENO schemes for mixed-element unstructured meshes. Commun. Comput. Phys. 8, 585–609 (2010)MathSciNet
    80.Toro, E.F., Titarev, V.A.: Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212(1), 150–165 (2006)MathSciNet CrossRef MATH
    81.Toro, E.F.: Anomalies of conservative methods: analysis, numerical evidence and possible cures. Int. J. Comput. Fluid Dyn. 11, 128–143 (2002)MathSciNet
    82.Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2009)CrossRef
    83.Tsoutsanis, P., Titarev, V.A., Drikakis, D.: WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions. J. Comput. Phys. 230, 1585–1601 (2011)MathSciNet CrossRef MATH
    84.Vilar, F.: Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Comput. Fluids 64, 64–73 (2012)MathSciNet CrossRef
    85.Vilar, F., Maire, P.H., Abgrall, R.: Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics. Comput. Fluids 46(1), 498–604 (2010)MathSciNet CrossRef
    86.Vilar, F., Maire, P.H., Abgrall, R.: A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. J. Comput. Phys. 276, 188–234 (2014)MathSciNet CrossRef
    87.von Neumann, J., Richtmyer, R.D.: A method for the calculation of hydrodynamics shocks. J. Appl. Phys. 21, 232–237 (1950)MathSciNet CrossRef MATH
    88.Yanilkin, Y.V., Goncharov, E.A., Kolobyanin, V.Y., Sadchikov, V.V., Kamm, J.R., Shashkov, M.J., Rider, W.J.: Multi-material pressure relaxation methods for Lagrangian hydrodynamics. Comput. Fluids 83, 137–143 (2013)MathSciNet CrossRef MATH
  • 作者单位:W. Boscheri (1)
    M. Dumbser (1)

    1. Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algorithms
    Computational Mathematics and Numerical Analysis
    Applied Mathematics and Computational Methods of Engineering
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1573-7691
文摘
In this paper we present a new and efficient quadrature-free formulation for the family of cell-centered high order accurate direct arbitrary-Lagrangian–Eulerian one-step ADER-WENO finite volume schemes on unstructured triangular and tetrahedral meshes that has been developed by the authors in a recent series of papers (Boscheri et al. in J Comput Phys 267:112–138, 2014; Boscheri and Dumbser in Commun Comput Phys 14:1174–1206, 2013; Boscheri and Dumbser in J Comput Phys 275:484–523, 2014; Dumbser and Boscheri in Comput Fluids 86:405–432, 2013). High order of accuracy in time is obtained by using a local space–time Galerkin predictor on moving curved meshes, while a high order accurate nonlinear WENO method is adopted to produce high order essentially non-oscillatory reconstruction polynomials in space. The mesh is moved at each time step according to the solution of a node solver algorithm that assigns a unique velocity vector to each node of the mesh. A rezoning procedure can also be applied when mesh distortions and deformations become too severe. The space–time mesh is then constructed by straight edges connecting the vertex positions at the old time level \(t^n\) with the new ones at the next time level \(t^{n+1}\), yielding closed space–time control volumes, on the boundary of which the numerical flux must be integrated. This is done here with a new and efficient quadrature-free approach: the space–time boundaries are split into simplex sub-elements, i.e. either triangles in 2D or tetrahedra in 3D. This leads to space–time normal vectors as well as Jacobian matrices that are constant within each sub-element. Within the space–time Galerkin predictor stage that solves the Cauchy problem inside each element in the small, the discrete solution and the flux tensor are approximated using a nodal space–time basis. Since these space–time basis functions are defined on a reference element and do not change, their integrals over the simplex sub-surfaces of the space–time reference control volume can be integrated once and for all analytically during a preprocessing step. The resulting integrals are then used together with the space–time degrees of freedom of the predictor in order to compute the numerical flux that is needed in the finite volume scheme. We apply the high order algorithm presented in this paper to the equations of hydrodynamics obtaining convergence rates up to fourth order of accuracy in space and time. A set of classical Lagrangian test problems has been solved and the results have been compared with the ones given by the original formulation of the algorithm (Boscheri and Dumbser 2013, 2014). The efficiency has been monitored and measured for each test case and the new quadrature-free schemes were up to 3.7 times faster than the ones based on Gaussian quadrature. Keywords Arbitrary-Lagrangian–Eulerian (ALE) Finite volume schemes Quadrature-free flux integration WENO reconstruction on moving unstructured meshes High order of accuracy in space and time Local rezoning Hydrodynamics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700