Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis
详细信息    查看全文
文摘
Two-dimensional graphitic carbon nitride (g-C3N4) nanosheets (GCNNs) have been considered as an attractive metal-free semiconductor because of their superior catalytic, optical, and electronic properties. However, it is still challenging to prepare monolayer GCNNs with a reduced lateral size in nanoscale. Herein, a highly efficient ultrasonic technique was used to prepare nanosized monolayer graphitic carbon nitride nanosheets (NMGCNs) with a thickness of around 0.6 nm and an average lateral size of about 55 nm. With a reduced lateral size yet monolayer thickness, NMGCNs show unique photo-responsive properties as compared to both large-sized GCNNs and GCN quantum dots. A dispersion of NMGCNs in water has good stability and exhibits strong blue fluorescence with a high quantum yield of 32%, showing good biocompatibility for cell imaging. Besides, compared to the multilayer GCNNs, NMGCNs show a highly improved photocatalysis under visible light irradiation. Overall, NMGCNs, characterized with monolayer and nanosized lateral dimension, fill the gap between large size (very high aspect ratio) and quantum dot-like counterparts, and show great potential applications as sensors, photo-related and electronic devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700