Radical addition reactions: factors determining the transition-state geometry
详细信息    查看全文
文摘
Interatomic distances in the reaction centers of the addition reactions of (i) H· to the C=C, C=O, N≡C, and C≡C bonds, (ii) ·CH3 radical to the C=C, C=O, and C≡C bonds, and (iii) alkyl, aminyl, and alkoxyl radicals to olefin C=C bonds were determined using a new semiempirical method for calculating transition-state geometries of radical reactions. For all reactions of the type X· + Y=Z → X— Y—Z· the r # X...Y distance in the transition state is a linear function of the enthalpy of reaction. Parameters of this dependence were determined for seventeen classes of radical addition reactions. The bond elongation, Δr # X...Y, in the transition state decreases as the triplet repulsion, electronegativity difference between the atoms X and Y in the reaction center, and the force constant of the attacked multiple bond increase.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700