In vivo evaluation of PEGylated 64Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT
详细信息    查看全文
  • 作者:Anncatrine Luisa Petersen…
  • 关键词:Nanoparticle ; Theranostic ; Cancer imaging ; Diagnostic ; PET ; Radiotherapy
  • 刊名:European Journal of Nuclear Medicine and Molecular Imaging
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:43
  • 期:5
  • 页码:941-952
  • 全文大小:1,217 KB
  • 参考文献:1.Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16:978–85.CrossRef PubMed
    2.Hellwig D, Gröschel A, Graeter TP, Hellwig AP, Nestle U, Schafers HJ, et al. Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2006;33:13–21.CrossRef PubMed
    3.Hutchings M, Loft A, Hansen M, Pedersen LM, Buhl T, Jurlander J, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107:52–9.CrossRef PubMed
    4.Hutchings M, Loft A, Hansen M, Berthelsen AK, Specht L. Clinical impact of FDG-PET/CT in the planning of radiotherapy for early-stage Hodgkin lymphoma. Eur J Haematol. 2007;78:206–12.CrossRef PubMed
    5.Torizuka T, Tanizaki Y, Kanno T, Futatsubashi M, Naitou K, Ueda Y, et al. Prognostic value of 18F-FDG PET in patients with head and neck squamous cell cancer. AJR Am J Roentgenol. 2009;192:W156–60.CrossRef PubMed
    6.Adams S, Baum R, Rink T, Schumm-Dräger PM, Usadel KH, Hör G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med. 1998;25:79–83.CrossRef PubMed
    7.Binderup T, Knigge U, Loft A, Mortensen J, Pfeifer A, Federspiel B, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51:704–12.CrossRef PubMed
    8.Miele E, Spinelli GP, Tomao F, Zullo A, De Marinis F, Pasciuti G, et al. Positron emission tomography (PET) radiotracers in oncology – utility of 18F-Fluoro-deoxy-glucose (FDG)-PET in the management of patients with non-small-cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2008;27:52–61.CrossRef PubMed PubMedCentral
    9.Ravindra V, Botkin C, Yost P, Osman M. Incidental diagnosis of prostate cancer in FDG PET/CT: An initial experience. J Nucl Med. 2007;48:474P.
    10.Schöder H, Larson SM. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med. 2004;34:274–92.CrossRef PubMed
    11.Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium and zirconium for PET and SPECT imaging of disease. Chem Rev. 2010;110:2858–902.CrossRef PubMed PubMedCentral
    12.Shokeen M, Anderson CJ. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc Chem Res. 2009;42:832–41.CrossRef PubMed PubMedCentral
    13.Connett JM, Anderson CJ, Guo LW, Schwarz SW, Zinn KR, Rogers BE, et al. Radioimmunotherapy with a 64Cu-labeled monoclonal antibody: a comparison with 67Cu. Proc Natl Acad Sci U S A. 1996;93:6814–8.CrossRef PubMed PubMedCentral
    14.Binderup T, Knigge U, Mogensen AM, Hansen CP, Kjaer A. Quantitative gene expression of somatostatin receptors and noradrenaline transporter underlying scintigraphic results in patients with neuroendocrine tumors. Neuroendocrinology. 2008;87:223–32.CrossRef PubMed
    15.Pfeifer AK, Gregersen T, Grønbæk H, Hansen CP, Muller-Brand J, Herskind BK, et al. Peptide receptor radionuclide therapy with Y-DOTATOC and (177)Lu-DOTATOC in advanced neuroendocrine tumors: results from a Danish cohort treated in Switzerland. Neuroendocrinology. 2011;93:189–96.CrossRef PubMed
    16.Cwikla JB, Sankowski A, Seklecka N, Buscombe JR, Nasierowska-Guttmejer A, Jeziorski KG, et al. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol. 2010;21:787–94.CrossRef PubMed
    17.Kwekkeboom DJ, Bakker WH, Kam BL, Teunissen JJM, Kooij PPM, de Herder WW, et al. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA0, Tyr3] octreotate. Eur J Nucl Med. 2003;30:417–22.CrossRef
    18.Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A. 1988;85:6949–53.CrossRef PubMed PubMedCentral
    19.Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta. 1991;1066:29–36.CrossRef PubMed
    20.Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphiphatic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268:235–7.CrossRef PubMed
    21.Lee C-M, Choi Y, Huh EJ, Lee KY, Song H-C, Sun MJ, et al. Polyethylene glycol (PEG) modified 99mTc-HMPAO-liposome for improving blood circulation and biodistribution: The effect of the extent of PEGylation. Cancer Biother Radiopharm. 2005;20:620–8.CrossRef PubMed
    22.Chow T-H, Lin Y-Y, Hwang J-J, Wang H-E, Tseng Y-L, Pang VF, et al. Therapeutic efficacy evaluation of 111In-labeled PEGylated liposomal vinorelbine in murine colon carcinoma with multimodalities of molecular imaging. J Nucl Med. 2009;50:2073–81.CrossRef PubMed
    23.Drummond DC, Meyer O, Hong KL, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51:691–743.PubMed
    24.Harrington KJ, Rowlinson-Busza G, Syrigos KN, Abra RM, Uster PS, Peters AM, et al. Influence of tumour size on uptake of 111In-DTPA-labelled pegylated liposomes in a human tumour xenograft model. Br J Cancer. 2000;83:684–8.CrossRef PubMed PubMedCentral
    25.Petersen AL, Binderup T, Rasmussen P, Henriksen JR, Elema DR, Kjær A, et al. 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials. 2011;32:2334–41.CrossRef PubMed
    26.Henriksen JR, Andresen TL. Thermodynamic profiling of peptide membranes interactions by isothermal titration calorimetry: a search for pores and micelles. Biophys J. 2011;101:100–9.CrossRef PubMed PubMedCentral
    27.Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed
    28.Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Can Res. 2001;7:243–54.
    29.Gabizon A. Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res. 2001;7:223–5.PubMed
    30.Vallabhajosula S. Molecular imaging: radiopharmaceuticals for PET and SPECT. Berlin Heidelberg: Springer; 2009.CrossRef
    31.Tonkopi E, Ross AA, MacDonald A. CT dose for whole-body PET/CT examinations. AJR Am J Roentgenol. 2013;201:257–63.CrossRef PubMed
    32.Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.CrossRef PubMed
    33.Hamoudeh M, Kamleh MA, Diab R, Fessi H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev. 2008;60:1329–46.CrossRef PubMed
    34.Wang H-E, Yu H-M, Lu Y-C, Heish N-N, Tseng Y-L, Huang K-L, et al. Internal radiotherapy and dosimetric study for 111In/177Lu-pegylated liposomes conjugates in tumor-bearing mice. Nucl Instrum Meth A. 2006;569:533–7.CrossRef
    35.Gritmon TF, Goedken MP, Choppin GR. The complexation of lanthanides by aminocarboxylate ligands – I. Stability constants. J Inorg Nucl Chem. 1977;39:2021–3.CrossRef
    36.Cacheris WP, Nickle SK, Sherry AD. Thermodynamic study of lanthanide complexes of 1,4,7-triazacyclononane-N,N′,N″,N‴-tetraacetic acid. Inorg Chem. 1987;26:958–60.CrossRef
    37.Wehrmann C, Senftleben S, Zachert C, Müller D, Baum RP. Results of individual patients dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Rad. 2007;22:406–16.CrossRef
  • 作者单位:Anncatrine Luisa Petersen (1) (2)
    Jonas Rosager Henriksen (2) (3)
    Tina Binderup (4)
    Dennis Ringkjøbing Elema (2) (5)
    Palle Hedengran Rasmussen (5)
    Anne Mette Hag (4)
    Andreas Kjær (4)
    Thomas Lars Andresen (1) (2)

    1. Department of Micro- and Nanotechnology, Technical University of Denmark, Building 345, 2800, Lyngby, Denmark
    2. Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800, Lyngby, Denmark
    3. Department of Chemistry, Technical University of Denmark, Building 206, 2800, Lyngby, Denmark
    4. Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet & Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
    5. Center for Nuclear Technologies, Hevesy Laboratory, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Nuclear Medicine
    Imaging and Radiology
    Orthopedics
    Cardiology
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1619-7089
文摘
Purpose The objective of this study was to evaluate the potential of PEGylated 64Cu-liposomes in clinical diagnostic positron emission tomography (PET) imaging and PEGylated 177Lu-liposomes in internal tumor radiotherapy through in vivo characterization and dosimetric analysis in a human xenograft mouse model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700