Effect of axial restraints on top-seat angle connections at elevated temperatures
详细信息    查看全文
  • 作者:Leong Siong Hean ; N. H. Ramli Sulong ; Mohammed Jameel
  • 刊名:KSCE Journal of Civil Engineering
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:20
  • 期:6
  • 页码:2375-2383
  • 全文大小:1,556 KB
  • 刊物类别:Engineering
  • 刊物主题:Civil Engineering
    Industrial Pollution Prevention
    Automotive and Aerospace Engineering and Traffic
    Geotechnical Engineering
  • 出版者:Korean Society of Civil Engineers
  • ISSN:1976-3808
  • 卷排序:20
文摘
In this study, a finite element model of a top-seat angle connection at elevated temperature is developed to study the effect of axial restraints on the connection behavior. Models are first validated with existing fire test results of top-seat angle connection. Non-linear behavior of the materials was modeled with the definition of elastic-plastic multi-linear properties and frictional contact between surfaces is included to simulate actual conditions. Validation of the model behavior shows that the model is in good agreement with existing experimental results and therefore the model is used for further study on the effect of axial restraints towards connection behavior. Both isothermal and anisothermal conditions were analyzed considering the effect of axial restraints. Results from the model shows that an increase in axial restraints has increased connection capacity while the stiffness remains similar for low axial levels. On the other hand, the shrinkage of the beam, may lead to tensional axial loads, causing axial pulling on the connection, resulting in higher deformation and different deformation patterns of the component angle sections. Effect on the design guidelines for connection design with axial restraints provided by Eurocode 3:2005 (Part 1-8) is also discussed at the end.Keywordsfinite elementangle connectionsaxial restraintselevated temperatures

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700