\(\pi \) Match: Monocular vSLAM and Piecewise Planar Reconstruction Using Fast Plane Correspondences
详细信息    查看全文
  • 关键词:Monocular visual SLAM ; Piecewise planar reconstruction
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9912
  • 期:1
  • 页码:380-395
  • 全文大小:7,215 KB
  • 参考文献:1.Antunes, M., Barreto, J.P., Nunes, U.: Piecewise-planar reconstruction using two views. Image Vis. Comput. 46, 47–63 (2016). http://​www.​sciencedirect.​com/​science/​article/​pii/​S026288561500139​0 CrossRef
    2.Concha, A., Civera, J.: DPPTAM: dense piecewise planar tracking and mapping from a monocular sequence. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5686–5693, September 2015
    3.Davison, A., Reid, I., Molton, N., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)CrossRef
    4.Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Heidelberg (2014). doi:10.​1007/​978-3-319-10605-2_​54
    5.Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1449–1456, December 2013
    6.Frey, B.J.: Affinity propagation. http://​www.​psi.​toronto.​edu/​index.​php?​q=​affinity%20​propagation
    7.Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007). www.​psi.​toronto.​edu/​affinitypropagat​ion MathSciNet CrossRef MATH
    8.Gallup, D., Frahm, J.M., Pollefeys, M.: Piecewise planar and non-planar stereo for urban scene reconstruction. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1418–1425, June 2010
    9.Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. (IJRR) 32, 389–395 (2013)CrossRef
    10.Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
    11.Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3D reconstruction in real-time. In: Intelligent Vehicles Symposium (IV) (2011)
    12.Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518
    13.Huynh, D.Q.: Metrics for 3D rotations: comparison and analysis. J. Math. Imaging Vis. 35(2), 155–164 (2009). http://​dx.​doi.​org/​10.​1007/​s10851-009-0161-2 MathSciNet CrossRef
    14.Isack, H., Boykov, Y.: Energy-based geometric multi-model fitting. Int. J. Comput. Vis. 97(2), 123–147 (2012). http://​dx.​doi.​org/​10.​1007/​s11263-011-0474-7 MathSciNet CrossRef MATH
    15.Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2007), Nara, Japan, November 2007
    16.Lourenço, M., Stoyanov, D., Barreto, J.P.: Visual odometry in stereo endoscopy by using PEaRL to handle partial scene deformation. In: Linte, C.A. (ed.) AE-CAI 2014. LNCS, vol. 8678, pp. 33–40. Springer, Heidelberg (2014). http://​dx.​doi.​org/​10.​1007/​978-3-319-10437-9_​4
    17.Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From Images to Geometric Models. Springer, New York (2003)MATH
    18.Magri, L., Fusiello, A.: T-linkage: a continuous relaxation of J-linkage for multi-model fitting. In: IEEE Conference on Computer Vision and Pattern Recognition (2014), pp. 3954–3961 (2014)
    19.Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 2320–2327. IEEE Computer Society, Washington, DC (2011). http://​dx.​doi.​org/​10.​1109/​ICCV.​2011.​6126513
    20.Pizzoli, M., Forster, C., Scaramuzza, D.: REMODE: probabilistic, monocular dense reconstruction in real time. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2609–2616, May 2014
    21.Raposo, C., Antunes, M., Barreto, J.P.: Piecewise-planar StereoScan:Structure and motion from plane primitives. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 48–63. Springer, Heidelberg (2014). http://​dx.​doi.​org/​10.​1007/​978-3-319-10605-2_​4
    22.Raposo, C., Barreto, J.P.: Theory and pratice of structure-from-motion using affine correspondences. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016). http://​arthronav.​isr.​uc.​pt/​~carolina/​files/​CVPRsubm.​pdf
    23.Song, S., Chandraker, M.: Robust scale estimation in real-time monocular SFM for autonomous driving. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1566–1573, June 2014
    24.Toldo, R., Fusiello, A.: Robust multiple structures estimation with J-linkage. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 537–547. Springer, Heidelberg (2008). http://​dx.​doi.​org/​10.​1007/​978-3-540-88682-2_​41 CrossRef
    25.Torr, P.H.S., Zisserman, A.: Mlesac: A new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78, 138–156 (2000)CrossRef
    26.Tron, R., Vidal, R.: A benchmark for the comparison of 3-D motion segmentation algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007, CVPR 2007, 1–8 June 2007
    27.Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008). http://​www.​vlfeat.​org/​
    28.Veksler, O., Delong, A.: Multi-label optimization. http://​vision.​csd.​uwo.​ca/​code/​
  • 作者单位:Carolina Raposo (17)
    João P. Barreto (17)

    17. Institute of Systems and Robotics, University of Coimbra, Coimbra, Portugal
  • 丛书名:Computer Vision ¨C ECCV 2016
  • ISBN:978-3-319-46484-8
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
  • 卷排序:9912
文摘
This paper proposes \(\pi \)Match, a monocular SLAM pipeline that, in contrast to current state-of-the-art feature-based methods, provides a dense Piecewise Planar Reconstruction (PPR) of the scene. It builds on recent advances in planar segmentation from affine correspondences (ACs) for generating motion hypotheses that are fed to a PEaRL framework which merges close motions and decides about multiple motion situations. Among the selected motions, the camera motion is identified and refined, allowing the subsequent refinement of the initial plane estimates. The high accuracy of this two-view approach allows a good scale estimation and a small drift in scale is observed, when compared to prior monocular methods. The final discrete optimization step provides an improved PPR of the scene. Experiments on the KITTI dataset show the accuracy of \(\pi \)Match and that it robustly handles situations of multiple motions and pure rotation of the camera. A Matlab implementation of the pipeline runs in about 0.7 s per frame.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700